Appendix. Standard integrals
Indefinite Integrals
For simplicity, the constant of integration has been omitted from the tabulation.
(n 1 ≠ 1 −1)
Zcos(ax b dx) sin( )
a
+=ax b+
1
Zcosxdx=sinx
Zsin(ax b dx) cos( )
a
+=−ax b+
1
Zsinxdx=−cosx
Zedx
a
e
ax b++ax b=
1
Zedx e
xx=
Zxxdx
x
n
x
n
nnln = ln
−
+ 11
1
1
Z
ln
(ln )
x
x
dx= x
1
2
2Z
dx
ax b a
ax b
=+
1
ln( )
Z
dx
x
dx=lnx
Z()
()
()
ax b dx ()
ax b
an
n
nn+=
≠−
+ 11
1
Zxdx
x
n
n
nn=
≠−
+ 11
() 1
Ztan tan
2xdx=−x x
Zcos ( sin cos )
21
2
xdx x=+x x
Zsin ( sin cos )
21
2
xdx x=−x x
=
e
abxbbx
ab
axcos sin
22Zebxdx
axcos
=
−
e
abxbbx
ab
axsin cos
22Zebxdx
axsin
Zsec
ln tan
ln
sin
sin
xdx
x
x
x
=
−
π
42
1
2
1
1
Z
cosecxdx
x
x
x
=
−
ln tan
ln
cos
cos
2
1
2
1
1