Appendix. Standard integrals
Indefinite Integrals
For simplicity, the constant of integration has been omitted from the tabulation.
(n 1 ≠ 1 −1)
Zcos(ax b dx) sin( )
a
+=ax b+
1
Zcosxdx=sinx
Zsin(ax b dx) cos( )
a
+=−ax b+
1
Zsinxdx=−cosx
Zedx
a
e
ax b++ax b
=
1
Zedx e
xx
=
Zxxdx
x
n
x
n
n
n
ln = ln
−
+ 1
1
1
1
Z
ln
(ln )
x
x
dx= x
1
2
2
Z
dx
ax b a
ax b
=+
1
ln( )
Z
dx
x
dx=lnx
Z()
()
()
ax b dx ()
ax b
an
n
n
n
+=
≠−
+ 1
1
1
Zxdx
x
n
n
n
n
=
≠−
+ 1
1
() 1
Ztan tan
2
xdx=−x x
Zcos ( sin cos )
2
1
2
xdx x=+x x
Zsin ( sin cos )
2
1
2
xdx x=−x x
=
e
abxbbx
ab
ax
cos sin
22
Zebxdx
ax
cos
=
−
e
abxbbx
ab
ax
sin cos
22
Zebxdx
ax
sin
Zsec
ln tan
ln
sin
sin
xdx
x
x
x
=
−
π
42
1
2
1
1
Z
cosecxdx
x
x
x
=
−
ln tan
ln
cos
cos
2
1
2
1
1