The Chemistry Maths Book, Second Edition

(Grace) #1

Solutions to exercises 645


Section 15.5






Section 15.6










Chapter 16


Section 16.2



  1. (i)b 1 − 1 a,a 1 − 1 b (ii)


(iii) (iv)b 1 + 1 λ(c 1 − 1 d),allλ


Section 16.3


2.(1, 1 ,1)



  1. (i)(3, 4 ,0) (ii) 5


(iii)(3 25 , 425 ,0)



  1. (i)(2,− 5 ,1) (ii)


(iii)



  1. (i)(2, 3 ,1) (ii)


(iii)


6.Both (− 1 , 5 ,−1)


7.(3, 6 ,9),(− 1 ,− 2 ,−3),(1 23 , 223 ,1)


8.(− 1 , 0 ,4) 9.Both (3,− 6 ,12)







  1. (i)(2, 1 − 1 ,0),


(ii)(1,− 1 ,1),(0, 0 ,0),(− 2 , 2 ,−2)



  1. (i)(2, 6 ,−6) (ii)(1, 3 ,−3)


13.− 2 i 1 + 1 j



  1. (i) 4 i (ii)λj (iii)λi


Section 16.4



  1. 2 i 1 + 16 tj 16.(− 21 sin 12 t, 31 cos 1 t,2)

  2. (i)v 1 = 1 ai 1 + 1 (a 1 − 1 gt)j,a 1 = 1 −gj


(ii)F 1 = 1 −mgj


(iii)to the right with constant speed v


x

1 = 1 a


(iv)vertical up and down under the


influence of gravity


(v)parabolic up and down to the right


27 14 29,+


(,,)214314114


14


(, ,)230530130−


30


1

2

()cd+


1

4

()abcd+++


gy


a


ay


()=














2


22

π


gy


ee


iy


iay iby

()=



−−

2 π


×−








exp nDtl


22 2

π


Txt


l


n


nx


l


n

(),= sin











81


2

33

π


π


odd


  1. (i)v 1 = 1 − 61 sin 13 t 1 i 1 + 161 cos 13 t 1 j 1 + 13 k


a 1 = 1 − 181 cos 13 t 1 i 1 − 1181 sin 13 t 1 j 1


= 1 −9(xi 1 + 1 yj)


(ii)− 9 m(xi 1 + 1 yj)


(iii)simple harmonic in both directions


(iv)circular in xy-plane at constant


angular speed


(v)in z-direction at constant speed


(vi)right-handed circular helix around


z-axis


Section 16.5


19.Both 7 20.Both 10


21.(0, 12 ,4) 23.− 1 24. 0


25.− 3 26. 2 27.π 23 , 2 π 23 ,π 24



  1. (i) 4 (ii)− 3 (iii) 0

  2. (i) 2522 (ii)


30.− 6


Section 16.6



  1. 9 i 1 − 1 j 1 + 13 k,− 9 i 1 + 1 j 1 − 13 k 32. 7 i, 7


33.Both 11 i 1 − 12 j 1 − 1 k 34. 0 35.− 7


36.− 14 j 1 − 121 k,i 1 − 118 j 1 − 19 k 40. 5



  1. (i)− 7 k (ii)i (iii)− 5 j

  2. 5 i 1 + 16 j 43.− 3 i 1 + 118 k

  3. (i)y 1 = 1 ωk (ii)v 1 = 1 −ωyi 1 + 1 ωxj


(iii)l 1 = 1 mω[(x


2

1 + 1 y


2

)k 1 − 1 xzi 1 − 1 yzj]


47.l 1 = 12 m(x


2

1 + 1 y


2

)ωk


Section 16.8



  1. 4 xi 1 + 16 yj 1 − 12 zk


49.(y 1 + 1 z)i 1 + 1 (x 1 + 1 z)j 1 + 1 (x 1 + 1 y)k


50.−(x


2

1 + 1 y


2

1 + 1 z


2

)


− 322

(xi 1 + 1 yj 1 + 1 zk)



  1. 3 , 0 52. 0 ,i 1 + 1 j 1 + 1 k 53. 0 , 0


Chapter 17


Section 17.1


1.x 1 = 12 ,y 1 = 13 2. 6 3. 2 4. 1


Section 17.2


5.x 1 = 11 ,y 1 = 12 ,z 1 = 13 6.− 11


V


x


y


z


=− − − +C


2

2

2

2


3


2

Free download pdf