72 Chapter 3Transcendental functions
This is one of the simplest second-order differential equations (Chapter 12) and a
solution is
x(t) 1 = 1 A 1 cos 1 ωt
where A, the amplitude, is the maximum displacement from equilibrium and
is called the angular frequency. The displacementx(t)is periodic with
respect to time, with period
where is the frequency of vibration. A plot of displacement against time
is very similar to that in Figure 3.12 (see Figure 12.3).
3.3 Inverse trigonometric functions
Ify 1 = 1 sin 1 xthen xis the angle whose sine is y, and is given by the inverse sine function
sin
− 1
y:
ify 1 = 1 sin 1 x thenx 1 = 1 sin
− 1
y (3.15)
Because of the possible confusion between the notation for the inverse sine,
sin
− 1
y, and the inverse of the sine, (sin 1 y)
− 1
, an alternative notation for the inverse
trigonometric functions is often used:
arcsin 1 y 1 = 1 sin
− 1
y, arccos 1 y 1 = 1 cos
− 1
y, arctan 1 y 1 = 1 tan
− 1
y (3.16)
The inverse functions are multi-valued functions; for example, as indicated in
Figure 3.13, many angles have the same sine:
sin x 1 = 1 sin 1 (π 1 − 1 x) 1 = 1 sin 1 (x 1 ± 12 nπ) (3.17)
ν=
1
2 π
k
m
τ
ων
==
21 π
ω= km
+1
− 1
o
x
y
•• • y=sinx
xπ−x 2 π+x
................................................................................................................................................................................................................
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
..
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
..
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
..
...
......
......
.....
.....
......
......
.....
......
.....
......
......
.....
.....
......
......
.....
......
......
......
.....
......
......
......
......
......
......
......
......
......
.......
.......
.......
.......
..........
...........
..........................
...........
..........
.......
.......
.......
.......
......
.......
.....
......
.......
.....
......
......
......
.....
......
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
.....
......
.....
......
......
.....
.....
......
......
.....
......
.....
.....
......
......
......
.....
.....
.......
.....
.....
......
......
.....
......
......
.....
.......
.....
......
......
......
......
.......
......
......
.......
.......
.......
..........
...........
.............................
...........
.........
.......
.......
.......
.......
......
......
......
......
......
......
......
......
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
.....
......
......
.....
......
.....
......
.....
......
.....
......
.....
......
......
.....
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
......
.....
.......
.....
......
......
......
......
.......
......
......
.......
.......
........
.........
...........
.............
Figure 3.13