CHAPTER 9. INTEGRAL CALCULUS
∫ () (∫ )
β
α
θ
θ
= θ θ + Ç
Ç
Çê
cñIóÇë cêÅçë Iêëáå ê
O
O
`
I==
ïÜÉêÉ=íÜÉ=ÅìêîÉ=`=áë=ÇÉÑáåÉÇ=Äó=íÜÉ=éçä~ê=ÑìåÅíáçå= FêEθ K=
=
- iáåÉ=fåíÉÖê~ä=çÑ=sÉÅíçê=cáÉäÇ=
iÉí=~=ÅìêîÉ=`=ÄÉ=ÇÉÑáåÉÇ=Äó=íÜÉ=îÉÅíçê=ÑìåÅíáçå=ê ê()ë
r r
= I=
M≤ë≤pK=qÜÉå==
=τ=()ÅçëαIÅçëβIÅçëγ
Çë
Çê r
r
==
áë=íÜÉ=ìåáí=îÉÅíçê=çÑ=íÜÉ=í~åÖÉåí=äáåÉ=íç=íÜáë=ÅìêîÉK==
=
=
=
Figure 204.
=
iÉí= ~=îÉÅíçê= ÑáÉäÇ=c(mInIo)
r
=áë=ÇÉÑáåÉÇ=çîÉê=íÜÉ=ÅìêîÉ=`K=
qÜÉå=íÜÉ=äáåÉ=áåíÉÖê~ä=çÑ=íÜÉ=îÉÅíçê=ÑáÉäÇ=c
r
=~äçåÖ=íÜÉ=ÅìêîÉ=
`=áë==
∫ + + =∫()α+ β+ γ
p
` M
mÇñ nÇó oÇò mÅçë nÅçë oÅçë ÇëK=
=
=