Draft
14.2BuildingsStructures 233
14.2 BuildingsStructures
11 Therearethreeprimarytypes of buildingsystems:
WallSubsytem: in which veryrigidwallsmadeupof solidmasonry, paneledor bracedtimber,
or steeltrussesconstitutea rigidsubsystem.Thisis onlyadequateforsmallrisebuildings.
VerticalShafts: madeupof foursolidor trussedwallsforminga tubularspacestructure.The
tubularstructuremay be interior(housingelevators,staircases)and/orexterior. Most
ecient forveryhighrisebuildings.
RigidFrame:which consistsof linearverticalcomponents (columns)rigidlyconnectedto sti
horizontalones(beamsandgirders).Thisis nota veryecient structuralformto resist
lateral(wind/earthquake) loads.
14.2.1 WallSubsystems
12 Whereasexteriorwallprovideenclosureandinterioronesseparation,bothof themcanalso
have a structuralrolein trnsferingverticalandhorizontalloads.
13 Wallsareconstructedoutof masonry, timber concreteor steel.
14 If thewallis bracedby
oors,thenit canprovideanexcellent resitanceto horizontalload
in theplaneof thewall(butnotorthogonalto it).
15 Whenshear-wallssubsytemsareused,it is bestif thecenterof orthogonalshearresistance
is closeto thecentroidof lateralloadsas applied. If thisis notthecase,thentherewillbe
torsionaldesignproblems.
14.2.1.1 Example: ConcreteShearWall
From (Linand Stotesbury 1981)
16 We considera reinforcedconcretewall20 ft wide,1 ft thick, and 120 ft highwitha vertical
loadof 400k actingonit at thebase. Asa resultof wind,we assumea uniformhorizontal
forceof 0.8kip/ftof verticalheight actingonthewall. It is requiredto computethe
exural
stressesandtheshearingstressesin thewallto resistthewindload,Fig.14.5.
- Maximumshearforceandbendingmoment at thebase
Vmax = wL= (0:8)k.ft(120)ft= 96k (14.8-a)
Mmax =
wL
2
2
=
(0:8)k.ft(120)
2
ft
2
2
= 5; 760 k.ft (14.8-b)
- Theresultingeccentricity is
eActual=
M
P
=
(5;760)k.ft
(400)k
= 14: 4 ft (14.9)
- Thecriticaleccentricity is
ecr=
L
6
=
(20)ft
6
= 3: 3 ft< eActualN:G: (14.10)
thus therewillbe tensionat thebase.