Structural Engineering

(nextflipdebug5) #1

Draft


5.3Shear& Moment Diagrams 107



  1. If we needto determinethemaximummoment alongBC, we know that


dMBC


dx


= 0


at thepoint whereVBC = 0, thatisVBC(x) = 64: 06 3 x= 0)x=


64 : 06


3


=


25 : 0 ft. In otherwords,maximummoment occurswheretheshearis zero.


ThusM


max
BC

= 432 + 64:06(25:0) 3


(25:0)


2


2


= 432 + 1; 601 : 5 937 :5 = 232k.ft



  1. FinallyalongCD, themoment variesquadratically(sincewe hada linearshear),


themoment rstincreases(positive shear),andthendecreases(negative shear).The


moment alongCDis givenby


MCD = MC+


R
x

0


VCD(x)dx= 139:8 +


R
x

0


(13: 22 3 x)dx


= 139 :8 + 13: 22 x 3


x


2


2


which is a parabola.


Substitutingforx= 15,we obtainat nodeC MC = 139:8 + 13:22(15) 3


15


2


2


=


139 :8 + 198: 3 337 :5 = 0


p


Example5-7: FrameShearandMoment Diagram;HydrostaticLoad


Theframeshownbelow is thestructuralsupportof a
ume.Assumingthattheframesare


spaced2 ft apartalongthelengthof the
ume,



  1. Determineallinternalmember endactions

  2. Draw theshearandmoment diagrams

  3. Locateandcomputemaximuminternalbendingmoments

  4. If thisis a reinforcedconcreteframe,show thelocationof thereinforcement.


Solution:


Thehydrostaticpressurecauseslateralforcesontheverticalmemberswhich canbe treated


as cantilevers xedat thelower end.

Free download pdf