Draft
5.3Shear& Moment Diagrams 107
- If we needto determinethemaximummoment alongB C, we know that
dMB C
dx
= 0
at thepoint whereVB C = 0, thatisVB C(x) = 64: 06 3 x= 0)x=
64 : 06
3
=
25 : 0 ft. In otherwords,maximummoment occurswheretheshearis zero.
ThusM
max
B C
= 432 + 64:06(25:0) 3
(25:0)
2
2
= 432 + 1; 601 : 5 937 :5 = 232k.ft
- FinallyalongC D, themoment variesquadratically(sincewe hada linearshear),
themoment rstincreases(positive shear),andthendecreases(negative shear).The
moment alongC Dis givenby
MC D = MC+
R
x
0
VC D(x)dx= 139:8 +
R
x
0
(13: 22 3 x)dx
= 139 :8 + 13: 22 x 3
x
2
2
which is a parabola.
Substitutingforx= 15,we obtainat nodeC MC = 139:8 + 13:22(15) 3
15
2
2
=
139 :8 + 198: 3 337 :5 = 0
p
Example5-7: FrameShearandMoment Diagram;HydrostaticLoad
Theframeshownbelow is thestructuralsupportof a
ume.Assumingthattheframesare
spaced2 ft apartalongthelengthof the
ume,
- Determineallinternalmember endactions
- Draw theshearandmoment diagrams
- Locateandcomputemaximuminternalbendingmoments
- If thisis a reinforcedconcreteframe,show thelocationof thereinforcement.
Solution:
Thehydrostaticpressurecauseslateralforcesontheverticalmemberswhich canbe treated
as cantileversxedat thelower end.