Structural Engineering

(nextflipdebug5) #1

Draft


5.4Flexure 113


whereyis measuredfromtheaxisof rotation(neutralaxis). Thus strainsareproportionalto


thedistancefromtheneutralaxis.


64 (Greekletterrho) is theradiusof curvature. In sometextbook,thecurvature(Greek


letterkappa) is alsousedwhere


=


1





(5.14)


thus,


"x=y (5.15)


5.4.2 Stress-StrainRelations


65 Sofarwe consideredthekinematicof thebeam,yet lateronwe willneedto considerequi-


libriumin termsof thestresses. Hencewe needto relatestrainto stress.


66 For linearelasticmaterialHooke'slaw states


x=E"x (5.16)


whereEisYoung'sModulus.


67 CombiningEq.withequation5.15we obtain


x=Ey (5.17)


5.4.3 InternalEquilibrium;SectionProperties


68 Justas externalforcesactingona structuremustbe in equilibrium,theinternalforcesmust


alsosatisfytheequilibriumequations.


69 Theinternalforcesaredeterminedbyslicingthebeam. Theinternalforcesonthe\cut"


sectionmustbe in equilibriumwiththeexternalforces.


5.4.3.1 Fx= 0; NeutralAxis


70 The rstequationwe consideris thesummationof axialforces.


71 Sincetherearenoexternalaxialforces(unlike a columnor a beam-column),theinternal


axialforcesmustbe in equilibrium.


Fx= 0)


Z


A


xdA= 0 (5.18)


wherexwas givenby Eq.5.17, substitutingwe obtain


Z


A


xdA=


Z


A


EydA= 0 (5.19-a)

Free download pdf