Draft
5.4Flexure 113
whereyis measuredfromtheaxisof rotation(neutralaxis). Thus strainsareproportionalto
thedistancefromtheneutralaxis.
64 (Greekletterrho) is theradiusof curvature. In sometextbook,thecurvature(Greek
letterkappa) is alsousedwhere
=
1
(5.14)
thus,
"x= y (5.15)
5.4.2 Stress-StrainRelations
65 Sofarwe consideredthekinematicof thebeam,yet lateronwe willneedto considerequi-
libriumin termsof thestresses. Hencewe needto relatestrainto stress.
66 For linearelasticmaterialHooke'slaw states
x=E"x (5.16)
whereEisYoung'sModulus.
67 CombiningEq.withequation5.15we obtain
x= Ey (5.17)
5.4.3 InternalEquilibrium;SectionProperties
68 Justas externalforcesactingona structuremustbe in equilibrium,theinternalforcesmust
alsosatisfytheequilibriumequations.
69 Theinternalforcesaredeterminedbyslicingthebeam. Theinternalforcesonthe\cut"
sectionmustbe in equilibriumwiththeexternalforces.
5.4.3.1 Fx= 0; NeutralAxis
70 Therstequationwe consideris thesummationof axialforces.
71 Sincetherearenoexternalaxialforces(unlike a columnor a beam-column),theinternal
axialforcesmustbe in equilibrium.
Fx= 0)
Z
A
xdA= 0 (5.18)
wherexwas givenby Eq.5.17, substitutingwe obtain
Z
A
xdA=
Z
A
EydA= 0 (5.19-a)