Structural Engineering

(nextflipdebug5) #1

Draft


5.4Flexure 121



  1. Check


(+



) MA= 0; (20)(16)(RC)(28)+ (RD)(28+ 28)=

320 (17:67)(28)+ (3:12)(56)=


320 494 :76 + 174:72 = 0


p
(5.34-a)


  1. Themoments aredeterminednext


Mmax = RAa= (5:45)(16)= 87.2 (5.35-a)


M 1 = RDL= (3:12)(28)= 87.36 (5.35-b)



  1. We now comparewiththeexactsolutionfromSection??, solution 21 where:L= 28,


a= 16,b= 12,andP= 20


R 1 =RA =


P b


4 L


3


h


4 L


2
a(L+a)

i


=


(20)(12)


4(28)


3


h


4(28)


2
(16)(28+ 16)

i


= 6.64 (5.36-a)


R 2 =RB =


P a


2 L


3


h


2 L


2
+b(L+a)

i


(5.36-b)


=


(20)(16)


2(28)


3


h


2(28)


2
+ 12(28+ 16)

i


= 15.28 (5.36-c)


R 3 =RD =


P ab


4 L


3


(L+a) (5.36-d)


=


(20)(16)(12)


4(28)


3


(28+ 16)= 1.92 (5.36-e)


Mmax = R 1 a= (6:64)(16)= 106.2 (5.36-f)


M 1 = R 3 L= (1:92)(28)= 53.8 (5.36-g)



  1. If we tabulatetheresultswe have


Value Approximate Exact % Error


RA 5.45 6.64 18


RC 17.67 15.28 -16


RD 3.12 1.92 63


M 1 87.36 53.8 62


Mmax 87.2 106.2 18


10.Whereasthecorrelationbetweentheapproximateandexactresultsis quitepoor,one


shouldnotunderestimatethesimplicity of thismethod keepingin mind(anexactanalysis


of thisstructurewouldhave beencomputationallymuch moreinvolved). Furthermore,


oftenoneonlyneedsa roughorderof magnitudeof themoments.

Free download pdf