Structural Engineering

(nextflipdebug5) #1

Draft


6.1Theory 125


Hv =


wx


2


2


+C 1 x+C 2 (6.6-b)


andtheconstants of integrationsC 1 andC 2 canbe obtainedfromtheboundaryconditions:


v= 0 atx= 0 andatx=L)C 2 = 0 andC 1 =


wL


2


. Thus


v=


w


2 H


x(Lx) (6.7)


Thisequationgives theshapev(x) in termsof thehorizontalforceH,


5 Sincethemaximumsaghoccursat midspan(x=


L


2


) we cansolve forthehorizontalforce


H=


wL


2


8 h


(6.8)


we notetheanalogywiththemaximummoment in a simplysupporteduniformlyloadedbeam


M=Hh=


wL


2


8


. Furthermore,thisrelationclearlyshowsthatthehorizontalforceis inversely


proportionalto thesagh, ash&H%. Finally, we canrewritethisequationas


r


def
=

h


L


(6.9-a)


wL


H


= 8 r (6.9-b)


6 EliminatingHfromEq.6.7and6.8we obtain


v= 4h

x


2


L


2






x


L


!


(6.10)


Thus thecableassumesa parabolicshape (asthemoment diagramof theappliedload).


7 WhereasthehorizontalforceHis constant throughoutthecable,thetensionTis not. The


maximumtensionoccursat thesupportwheretheverticalcomponent is equaltoV =


wL


2


and


thehorizontalonetoH, thus


Tmax=


p


V


2
+H

2
=

s

wL

2



2

+H


2
=H

s


1 +



wL= 2

H


 2


(6.11)


CombiningthiswithEq.6.8we obtain


1
.

Tmax=H


p


1 + 16r


2
H(1 + 8r

2
) (6.12)

8 Hadwe assumeda uniformloadwper lengthof cable(ratherthanhorizontalprojection),


theequationwouldhave beenoneof a catenary


2
.

v=


H


w


cosh



w

H



L

2


x





+h (6.13)


Thecablebetweentransmissiontowersis a good exampleof a catenary.


1
Recallingthat(a+b)

n
=a

n
+na

n 1
b+

n(n1)


2!


a


n 2
b

2
+or (1 +b)

n
= 1 +nb+

n(n1)b^2


2!






n(n1)(n2)b^3


3!


+;


Thus forb


2
<<1,

p
1 +b= (1 +b)

1


(^2) 1 +
b
2
2
Derivationof thisequationis beyondthescope of thiscourse.

Free download pdf