Draft
6.1Theory 125
Hv =
wx
2
2
+C 1 x+C 2 (6.6-b)
andtheconstants of integrationsC 1 andC 2 canbe obtainedfromtheboundaryconditions:
v= 0 atx= 0 andatx=L)C 2 = 0 andC 1 =
wL
2
. Thus
v=
w
2 H
x(Lx) (6.7)
Thisequationgives theshapev(x) in termsof thehorizontalforceH,
5 Sincethemaximumsaghoccursat midspan(x=
L
2
) we cansolve forthehorizontalforce
H=
wL
2
8 h
(6.8)
we notetheanalogywiththemaximummoment in a simplysupporteduniformlyloadedbeam
M=Hh=
wL
2
8
. Furthermore,thisrelationclearlyshowsthatthehorizontalforceis inversely
proportionalto thesagh, ash&H%. Finally, we canrewritethisequationas
r
def
=
h
L
(6.9-a)
wL
H
= 8 r (6.9-b)
6 EliminatingHfromEq.6.7and6.8we obtain
v= 4h
x
2
L
2
x
L
!
(6.10)
Thus thecableassumesa parabolicshape (asthemoment diagramof theappliedload).
7 WhereasthehorizontalforceHis constant throughoutthecable,thetensionTis not. The
maximumtensionoccursat thesupportwheretheverticalcomponent is equaltoV =
wL
2
and
thehorizontalonetoH, thus
Tmax=
p
V
2
+H
2
=
s
wL
2
2
+H
2
=H
s
1 +
wL= 2
H
2
(6.11)
CombiningthiswithEq.6.8we obtain
1
.
Tmax=H
p
1 + 16r
2
H(1 + 8r
2
) (6.12)
8 Hadwe assumeda uniformloadwper lengthof cable(ratherthanhorizontalprojection),
theequationwouldhave beenoneof a catenary
2
.
v=
H
w
cosh
w
H
L
2
x
+h (6.13)
Thecablebetweentransmissiontowersis a good exampleof a catenary.
1
Recallingthat(a+b)
n
=a
n
+na
n 1
b+
n(n1)
2!
a
n 2
b
2
+or (1 +b)
n
= 1 +nb+
n(n1)b^2
2!
n(n1)(n2)b^3
3!
+;
Thus forb
2
<<1,
p
1 +b= (1 +b)
1
(^2) 1 +
b
2
2
Derivationof thisequationis beyondthescope of thiscourse.