Structural Engineering

(nextflipdebug5) #1

Draft


10.6Examples 181



  1. ComputethefactoredloadmomentMu. Fora simplysupportedbeamcarrying


uniformlydistributedload,


Mu=wuL


2
=8 = (1:52)(20)

2
=8 = 76k.ft

Assumingcompactsection,sincea vastmajority of rolledsectionssatisfypfor


boththe
angeandtheweb. ThedesignstrengthbMnis


bMn=bMp=bZxFy


Thedesignrequirement is


bMn=Mu


or,combingthosetwo equationswe have:


bZxFy=Mu



  1. RequiredZxis


Zx=


Mu


bFy


=


76(12)


0 :90(36)


= 28 : 1 in


3


FromthenotesonStructuralMaterials,we selecta W12X22sectionwhich hasa


Zx= 29: 3 in


3


NotethatZxis approximatedby


wd


9


=


(22)(12)


9


= 29:3.



  1. Check compactsectionlimitspforthe
    angesfromthetable


=


bf


2 tf


= 4 : 7


p =


65
p
Fy

=


65
p
36

= 10: 8 > 


p


andfortheweb:


=


hc


tw


= 41 : 8


p =


640
p
Fy

=


640
p
36

= 107


p



  1. Check theStrengthby correctingthefactoredmomentMuto includetheselfweight.


Selfweight of thebeamW12X22is 22 lb./ft.or 0.022kip/ft


wD = 0 :2 + 0: 022 = 0: 222 k/ft


wu = 1 :2(0:222)+ 1:6(0:8) = 1: 55 k/ft


Mu = (1:55)(20)


2
=8 = 77: 3 k.ft

Mn = Mp=ZxFy=


(29:3)in


3
(36)ksi

(12)in/ft


= 87: 9 k.ft


bMn = 0 :90(87:9) = 79: 1 k.ft> Mu


p


Thereforeuse W12X22 section.



  1. We nallycheck forthemaximumdistancebetweensupports.


ry =


s


Iy


A


=


r


5


6 : 5


= 0: 88 in (10.16-a)


Lp =


300
p

Fy


ry (10.16-b)


=


300
p

36


0 :88 = 43 ft (10.16-c)

Free download pdf