- I The Expanding Universe of Numbers............................ Part A
- 0 Sets,RelationsandMappings
- 1 NaturalNumbers............................................
- 2 IntegersandRationalNumbers
- 3 RealNumbers
- 4 Metric Spaces
- 5 ComplexNumbers
- 6 QuaternionsandOctonions
- 7 Groups
- 8 RingsandFields
- 9 Vector Spaces and Associative Algebras
- 10 Inner Product Spaces........................................
- 11 FurtherRemarks
- 12 SelectedReferences
- AdditionalReferences
- II Divisibility..................................................
- 1 GreatestCommonDivisors
- 2TheB ́ezout Identity
- 3 Polynomials
- 4 EuclideanDomains..........................................
- 5 Congruences
- 6 SumsofSquares
- 7 FurtherRemarks
- 8 SelectedReferences
- AdditionalReferences
- III More on Divisibility.......................................... viii Contents
- 1 TheLawofQuadraticReciprocity
- 2 QuadraticFields
- 3 Multiplicative Functions
- 4 Linear Diophantine Equations
- 5 FurtherRemarks
- 6 SelectedReferences
- AdditionalReferences
- IV Continued Fractions and Their Uses............................
- 1 TheContinuedFractionAlgorithm.............................
- 2 Diophantine Approximation
- 3 PeriodicContinuedFractions..................................
- 4 Quadratic Diophantine Equations..............................
- 5 The Modular Group
- 6 Non-EuclideanGeometry.....................................
- 7 Complements...............................................
- 8 FurtherRemarks
- 9 SelectedReferences
- AdditionalReferences
- V Hadamard’s Determinant Problem.............................
- 1 WhatisaDeterminant?
- 2 HadamardMatrices..........................................
- 3 TheArtofWeighing.........................................
- 4 SomeMatrixTheory.........................................
- 5 ApplicationtoHadamard’sDeterminantProblem.................
- 6 Designs....................................................
- 7 Groups and Codes
- 8 FurtherRemarks
- 9 SelectedReferences
- VI Hensel’sp-adic Numbers......................................
- 1 ValuedFields...............................................
- 2 Equivalence
- 3 Completions................................................
- 4 Non-ArchimedeanValuedFields...............................
- 5 Hensel’sLemma
- 6 LocallyCompactValuedFields................................
- 7 FurtherRemarks
- 8 SelectedReferences
- VII The Arithmetic of Quadratic Forms............................. Part B
- 1 Quadratic Spaces............................................
- 2 TheHilbertSymbol
- 3 TheHasse–MinkowskiTheorem...............................
- 4 Supplements
- 5 FurtherRemarks
- 6 SelectedReferences
- VIII The Geometry of Numbers....................................
- 1 Minkowski’s Lattice Point Theorem
- 2 Lattices....................................................
- 3 Proof of the Lattice Point Theorem; Other Results................
- 4 Voronoi Cells
- 5 DensestPackings............................................
- 6 Mahler’sCompactnessTheorem...............................
- 7 FurtherRemarks
- 8 SelectedReferences
- AdditionalReferences
- IX The Number of Prime Numbers................................
- 1 FindingtheProblem
- 2 Chebyshev’sFunctions.......................................
- 3 ProofofthePrimeNumberTheorem
- 4 The Riemann Hypothesis
- 5 Generalizations and Analogues
- 6 AlternativeFormulations
- 7 SomeFurtherProblems
- 8 FurtherRemarks
- 9 SelectedReferences
- AdditionalReferences
- X A Character Study...........................................
- 1 PrimesinArithmeticProgressions
- 2 Characters of Finite Abelian Groups
- 3 Proof of the Prime Number Theorem for Arithmetic Progressions
- 4 Representations of Arbitrary Finite Groups
- 5 Characters of Arbitrary Finite Groups..........................
- 6 InducedRepresentationsandExamples
- 7 Applications................................................
- 8 Generalizations
- 9 FurtherRemarks
- 10 SelectedReferences
- XI Uniform Distribution and Ergodic Theory....................... x Contents
- 1 UniformDistribution
- 2 Discrepancy................................................
- 3 Birkhoff’s Ergodic Theorem
- 4 Applications................................................
- 5 Recurrence.................................................
- 6 FurtherRemarks
- 7 SelectedReferences
- AdditionalReference
- XII Elliptic Functions............................................
- 1 Elliptic Integrals............................................
- 2 TheArithmetic-GeometricMean
- 3 Elliptic Functions
- 4 ThetaFunctions.............................................
- 5 Jacobian Elliptic Functions...................................
- 6 The Modular Function
- 7 FurtherRemarks
- 8 SelectedReferences
- XIII Connections with Number Theory..............................
- 1 SumsofSquares
- 2 Partitions..................................................
- 3 CubicCurves...............................................
- 4 Mordell’sTheorem
- 5 FurtherResultsandConjectures
- 6 SomeApplications
- 7 FurtherRemarks
- 8 SelectedReferences
- AdditionalReferences
- Notations........................................................
- Axioms..........................................................
- Index............................................................
ff
(ff)
#1