6 Selected References 177
[18] S. Gelbart, An elementary introduction to the Langlands program,Bull. Amer. Math. Soc.
(N.S.) 10 (1984), 177–219.
[19] C.R. Hadlock,Field theory and its classical problems, Carus Mathematical Monographs
no. 19, Mathematical Association of America, Washington, D.C., 1978. [Reprinted in
paperback, 2000]
[20] H. Hasse,Number theory, English transl. by H.G. Zimmer, Springer-Verlag, Berlin, 1980.
[21] D.R. Heath-Brown, Odd perfect numbers,Math. Proc. Cambridge Philos. Soc. 115
(1994), 191–196.
[22] E. Hecke,Lectures on the theory of algebraic numbers, English transl. by G.U. Brauer,
J.R. Goldman and R. Kotzen, Springer-Verlag, New York, 1981. [German original, 1923]
[23] E.L. Ince,Cycles of reduced ideals in quadratic fields, Mathematical Tables Vol. IV,
British Association, London, 1934.
[24] N. Jacobson,Basic Algebra I, 2nd ed., W.H. Freeman, New York, 1985.
[25] T. Kailath,Linear systems, Prentice–Hall, Englewood Cliffs, N.J., 1980.
[26] R.E. Kalman, Algebraic theory of linear systems,Topics in mathematical system theory
(R.E. Kalman, P.L. Falb and M.A. Arbib), pp. 237–339, McGraw–Hill, New York, 1969.
[27] I. Kaplansky, Elementary divisors and modules,Trans. Amer. Math. Soc. 66 (1949),
464–491.
[28] E. Kummer,Collected Papers, Vol. I(ed. A. Weil), Springer-Verlag, Berlin, 1975.
[29] T.Y. Lam,Serre’s conjecture, Lecture Notes in Mathematics 635 , Springer-Verlag, Berlin,
1978.
[30] E. Landau,Vorlesungen ̈uber Zahlentheorie, 3 vols., Hirzel, Leipzig, 1927. [Reprinted,
Chelsea, New York, 1969]
[31] S. Lang,Algebra, corrected reprint of 3rd ed., Addison-Wesley, Reading, Mass., 1994.
[32] S. Lang,Algebraic number theory,2nd ed., Springer-Verlag, New York, 1994.
[33] G. Lejeune-Dirichlet,We r k e, Band I, pp. 237–256, reprinted Chelsea, New York, 1969.
[34] C.C. Macduffee,The theory of matrices, corrected reprint, Chelsea, New York, 1956.
[35] P.J. McCarthy,Introduction to arithmetical functions, Springer-Verlag, New York, 1986.
[36] P. Morandi,Field and Galois theory, Springer-Verlag, New York, 1996.
[37] R. Narasimhan,Complex analysis in one variable,Birkh ̈auser, Boston, Mass., 1985.
[38] W. Narkiewicz,Elementary and analytic theory of algebraic numbers, 2nd ed., Springer-
Verlag, Berlin, 1990.
[39] J. Neukirch,Algebraic number theory, English transl. by N. Schappacher, Springer,
Berlin, 1999.
[40] M. Newman,Integral matrices, Academic Press, New York, 1972.
[41] P. Ribenboim,13 Lectures on Fermat’s last theorem, Springer-Verlag, New York, 1979.
[42] H.J.J. te Riele, Perfect numbers and aliquot sequences,Computational methods in number
theory(ed. H.W. Lenstra Jr. and R. Tijdeman), Part I, pp. 141–157, Mathematical Centre
Tracts 154 , Amsterdam, 1982.
[43] M.L. Rosen, A proof of the Lucas–Lehmer test,Amer. Math. Monthly 95 (1988), 855–856.
[44] H.H. Rosenbrock,State-space and multivariable theory, Nelson, London, 1970.
[45] G.-C. Rota, On the foundations of combinatorial theory I. Theory of M ̈obius functions,
Z. Wahrsch. Verw. Gebiete 2 (1964), 340–368.
[46] G. Rousseau, On the Jacobi symbol,J. Number Theory 48 (1994), 109–111.
[47] P. Samuel,Algebraic theory of numbers, English transl. by A.J. Silberger, Houghton
Mifflin, Boston, Mass., 1970.
[48] R. Sivaramakrishnan,Classical theory of arithmetic functions, M. Dekker, New York,
1989.
[49] H.J.S. Smith,Collected mathematical papers,Vo l. 1, pp. 367–409, reprinted, Chelsea,
New York, 1965.