326 VII The Arithmetic of Quadratic Forms
[2] T. Beth, D. Jungnickel and H. Lenz,Design theory, 2nd ed., 2 vols., Cambridge University
Press, 1999.
[3] A. Borel, Values of indefinite quadratic forms at integral points and flows on spaces of
lattices,Bull. Amer. Math. Soc.(N.S.) 32 (1995), 184–204.
[4] J.W.S. Cassels,Rational quadratic forms, Academic Press, London, 1978.
[5] J.W.S. Cassels and A. Fr ̈ohlich (ed.),Algebraic number theory, Academic Press, London,
1967.
[6] J.H. Conway, Invariants for quadratic forms,J. Number Theory 5 (1973), 390–404.
[7] S.G. Dani and G.A. Margulis, Values of quadratic forms at integral points: an elementary
approach,Enseign. Math. 36 (1990), 143–174.
[8] J. Dieudonn ́e,La g ́eom ́etrie des groupes classiques, 2nd ed., Springer-Verlag, Berlin, 1963.
[9] A. Fr ̈ohlich, Quadratic forms ‘`a la’ local theory,Proc. Camb. Phil. Soc. 63 (1967),
579–586.
[10] D. Garbanati, Class field theory summarized,Rocky Mountain J. Math. 11 (1981),
195–225.
[11] B. Green, F. Pop and P. Roquette, On Rumely’s local-global principle,Jahresber. Deutsch.
Math.–Verein. 97 (1995), 43–74.
[12] I. Gusi ́c, Weak Hasse principle for cubic forms,Glas. Mat. Ser. III 30 (1995), 17–24.
[13] H. Hasse,Mathematische Abhandlungen(ed. H.W. Leopoldt and P. Roquette), Band I, de
Gruyter, Berlin, 1975.
[14] J.S. Hsia, On the Hasse principle for quadratic forms,Proc. Amer. Math. Soc. 39 (1973),
468–470.
[15] N. Jacobson,Basic Algebra I, 2nd ed., Freeman, New York, 1985.
[16] Y. Kitaoka,Arithmetic of quadratic forms, Cambridge University Press, 1993.
[17] C.W.H. Lam, The search for a finite projective plane of order 10,Amer. Math. Monthly 98
(1991), 305–318.
[18] T.Y. Lam,The algebraic theory of quadratic forms, revised 2nd printing, Benjamin,
Reading, Mass., 1980.
[19] D.W. Lewis, The Merkuryev–Suslin theorem,Irish Math. Soc. Newsletter 11 (1984),
29–37.
[20] J. Milnor and D. Husemoller,Symmetric bilinear forms, Springer-Verlag, Berlin, 1973.
[21] J. Neukirch,Class field theory, Springer-Verlag, Berlin, 1986.
[22] O.T. O’Meara,Introduction to quadratic forms, corrected reprint, Springer-Verlag,
New York, 1999. [Original edition, 1963]
[23] A. Pfister, Hilbert’s seventeenth problem and related problems on definite forms,
Mathematical developments arising from Hilbert problems(ed. F.E. Browder), pp. 483–
489, Proc. Symp. Pure Math. 28 , Part 2, Amer. Math. Soc., Providence, Rhode Island,
1976.
[24] A. Pfister,Quadratic forms with applications to algebraic geometry and topology,
Cambridge University Press, 1995.
[25] A.R. Rajwade,Squares,Cambridge University Press, 1993.
[26] M. Ratner, Interactions between ergodic theory, Lie groups, and number theory,Pro-
ceedings of the International Congress of Mathematicians:Z ̈urich 1994, pp. 157–182,
Birkh ̈auser, Basel, 1995.
[27] W. Rudin, Sums of squares of polynomials,Amer. Math. Monthly 107 (2000), 813–821.
[28] W. Scharlau,Quadratic and Hermitian forms,Springer-Verlag, Berlin, 1985.
[29] J.-P. Serre,A course in arithmetic, Springer-Verlag, New York, 1973.
[30] W.C. Waterhouse, Pairs of quadratic forms,Invent. Math. 37 (1976), 157–164.
[31] K.S. Williams, On the size of a solution of Legendre’s equation,Utilitas Math. 34 (1988),
65–72.
[32] E. Witt, Theorie der quadratischen Formen in beliebigen K ̈orpern,J. Reine Angew. Math.
176 (1937), 31–44.