Number Theory: An Introduction to Mathematics

(ff) #1

336 VIII The Geometry of Numbers


Π

|φ(x)|^2 dx=


w∈Zn

|cw|^2 ,

where


cw=


Π

φ(x)e−^2 πiw

tx
dx.

But


cw=


Π


z∈Zn

Ψ(x+z)e−^2 πiw

tx
dx

=



Π


z∈Zn

Ψ(x+z)e−^2 πiw

t(x+z)
dx,

sincee^2 kπi=1 for any integerk. Hence


cw=


Rn

Ψ(y)e−^2 πiw

ty
dy.

On the other hand,



Π

|φ(x)|^2 dx=


Π


z′,z′′∈Zn

Ψ(x+z′)Ψ(x+z′′)dx

=



Π


z,z′∈Zn

Ψ(x+z′)Ψ(x+z′+z)dx

=



Rn


z∈Zn

Ψ(y)Ψ(y+z)dy=


Rn

Ψ(y)φ(y)dy.

Substituting these expressions in Parseval’s equality, we obtain the result. 


Suppose, in particular, thatΨtakes only real nonnegative values. Then so also does
φand



Rn

Ψ(x)φ(x)dx≤sup
x∈Rn

φ(x)


Rn

Ψ(x)dx.

On the other hand, omitting all terms withw=0 we obtain



w∈Zn






Rn

Ψ(x)e−^2 πiw

tx
dx





2

(∫


Rn

Ψ(x)dx

) 2


.

Free download pdf