336 VIII The Geometry of Numbers
∫
Π
|φ(x)|^2 dx=
∑
w∈Zn
|cw|^2 ,
where
cw=
∫
Π
φ(x)e−^2 πiw
tx
dx.
But
cw=
∫
Π
∑
z∈Zn
Ψ(x+z)e−^2 πiw
tx
dx
=
∫
Π
∑
z∈Zn
Ψ(x+z)e−^2 πiw
t(x+z)
dx,
sincee^2 kπi=1 for any integerk. Hence
cw=
∫
Rn
Ψ(y)e−^2 πiw
ty
dy.
On the other hand,
∫
Π
|φ(x)|^2 dx=
∫
Π
∑
z′,z′′∈Zn
Ψ(x+z′)Ψ(x+z′′)dx
=
∫
Π
∑
z,z′∈Zn
Ψ(x+z′)Ψ(x+z′+z)dx
=
∫
Rn
∑
z∈Zn
Ψ(y)Ψ(y+z)dy=
∫
Rn
Ψ(y)φ(y)dy.
Substituting these expressions in Parseval’s equality, we obtain the result.
Suppose, in particular, thatΨtakes only real nonnegative values. Then so also does
φand
∫
Rn
Ψ(x)φ(x)dx≤sup
x∈Rn
φ(x)
∫
Rn
Ψ(x)dx.
On the other hand, omitting all terms withw=0 we obtain
∑
w∈Zn
∣
∣
∣
∣
∫
Rn
Ψ(x)e−^2 πiw
tx
dx
∣
∣
∣
∣
2
≥
(∫
Rn
Ψ(x)dx