362 VIII The Geometry of Numbers
[52] A. Schrijver,Theory of linear and integer programming, corrected reprint, Wiley,
Chichester, 1989.
[53] R.L.E. Schwarzenberger,N-dimensional crystallography, Pitman, London, 1980.
[54] B.F. Skubenko, A remark on an upper bound on the Hermite constant for the densest
lattice packings of spheres,J. Soviet Math. 18 (1982), 960–961.
[55] N.J.A. Sloane, The packing of spheres,Scientific American 250 (1984), 92–101.
[56] P.J. Steinhardt and S. Ostlund (ed.),The physics of quasicrystals, World Scientific,
Singapore, 1987.
[57] L. Szabo, A simple proof for the Jordan measurability of convex sets,Elem. Math. 52
(1997), 84–86.
[58] T.M. Thompson,From error-correcting codes through sphere packings to simple groups,
Carus Mathematical Monograph No. 21, Mathematical Association of America, 1983.
[59] A. Vince, Periodicity, quasiperiodicity and Bieberbach’s theorem,Amer. Math. Monthly
104 (1997), 27–35.
[60] A. Weil,Basic number theory, 2nd ed., Springer-Verlag, Berlin, 1973.
[61] J.A. Wolf,Spaces of constant curvature, 3rd ed., Publish or Perish, Boston, Mass., 1974.
[62] C. Zong,Sphere packings, Springer-Verlag, New York, 1999.
AdditionalReferences
F. Pfender and G. Ziegler, Kissing numbers, sphere packings and some unexpected proofs,
Notices Amer. Math. Soc. 51 (2004), 873–883. [The Leechlattice is indeed the densest lattice in
R^24 .]
O.R. Musin, The problem of the twenty-five spheres,Russian Math. Surveys 58 (2003),
794–795. [The kissing number ofR^4 is 24.]
G. Muraz and J.-L. Verger-Gaugry, On a generalization of the selection theorem of Mahler,
Journal de Th ́eorie des Nombres de Bordeaux 17 (2005), 237–269. [Extends Mahler’s compact-
ness theorem for lattices to sets which are uniformly discrete and uniformly relatively dense.]