2 Chebyshev’s Functions 369by Lemma 3, it follows that
π(x)=ψ(x)/logx+O(x/log^2 x).Suppose next thatπ(x)=O(x/logx).Foranyx>2wehaveθ(x)=∫x+2 −logtdπ(t)=π(x)logx−∫x2π(t)/tdt=O(x),and hence alsoψ(x)=O(x), by Lemma 3.
It follows at once from Lemma 4 thatthe prime number theorem,π(x)∼x/logx,
is equivalent toψ(x)∼x.
The method of argument used in Lemma 4 can be carried further. Put
θ(x)=x+R(x), π(x)=∫x2dt/logt+Q(x).Subtracting
∫x2dt/logt=x/logx− 2 /log 2+∫x2dt/log^2 tfrom
π(x)=θ(x)/logx+∫x2θ(t)/tlog^2 tdt,we obtain
Q(x)=R(x)/logx+∫x2R(t)/tlog^2 tdt+ 2 /log 2. (3) 1Also, adding
∫x2(∫t2du/logu)
dt/t=∫x2(∫xudt/t)
du/logu=
∫x2(logx−logu)du/logu=logx∫x2dt/logt−x+ 2to
θ(x)=π(x)logx−∫x2π(t)/tdtwe obtain
R(x)=Q(x)logx−∫x2Q(t)/tdt− 2. (3) 2