2 Chebyshev’s Functions 369
by Lemma 3, it follows that
π(x)=ψ(x)/logx+O(x/log^2 x).
Suppose next thatπ(x)=O(x/logx).Foranyx>2wehave
θ(x)=
∫x+
2 −
logtdπ(t)
=π(x)logx−
∫x
2
π(t)/tdt=O(x),
and hence alsoψ(x)=O(x), by Lemma 3.
It follows at once from Lemma 4 thatthe prime number theorem,π(x)∼x/logx,
is equivalent toψ(x)∼x.
The method of argument used in Lemma 4 can be carried further. Put
θ(x)=x+R(x), π(x)=
∫x
2
dt/logt+Q(x).
Subtracting
∫x
2
dt/logt=x/logx− 2 /log 2+
∫x
2
dt/log^2 t
from
π(x)=θ(x)/logx+
∫x
2
θ(t)/tlog^2 tdt,
we obtain
Q(x)=R(x)/logx+
∫x
2
R(t)/tlog^2 tdt+ 2 /log 2. (3) 1
Also, adding
∫x
2
(∫t
2
du/logu
)
dt/t=
∫x
2
(∫x
u
dt/t
)
du/logu
=
∫x
2
(logx−logu)du/logu
=logx
∫x
2
dt/logt−x+ 2
to
θ(x)=π(x)logx−
∫x
2
π(t)/tdt
we obtain
R(x)=Q(x)logx−
∫x
2
Q(t)/tdt− 2. (3) 2