380 IX The Number of Prime Numbers
withF( 1 )=1 which is holomorphic in the half-planeRz >0 and bounded for
1 <Rz<2.
It follows from the definition ofΓ(z)and the product formula for the sine function
that
Γ(z)Γ( 1 −z)=π/sinπz.Many definite integrals may be evaluated in terms of the gamma function. By repeated
integration by parts it may be seen that, ifRz>0andn∈N,then
n!nz/z(z+ 1 )···(z+n)=∫n0( 1 −t/n)ntz−^1 dt,wheretz−^1 =exp{(z− 1 )logt}. Lettingn→∞, we obtain the integral representation
Γ(z)=∫∞
0e−ttz−^1 dt forRz> 0. (9)It follows thatΓ( 1 / 2 )=π^1 /^2 ,since
∫∞0e−tt−^1 /^2 dt=∫∞
−∞e−v2
dv=π^1 /^2 ,by the proof of Proposition 10. It was already shown by Euler (1730) that
B(x,y):=∫ 1
0tx−^1 ( 1 −t)y−^1 dt=Γ(x)Γ(y)/Γ(x+y),the relation holding forRx > 0andRy > 0. The unit ball inRnhas volume
κn:=πn/^2 /(n/ 2 )! and surface contentnκn.Stirling’s formula,n!≈(n/e)n
√
2 πn,
follows at once from the integral representation
logΓ(z)=(z− 1 / 2 )logz−z+( 1 / 2 )log 2π−∫∞
0(t−t− 1 / 2 )(z+t)−^1 dt,valid for anyz∈Cwhich is not zero or a negative integer. Euler’s constant
γ= lim
n→∞
( 1 + 1 / 2 + 1 / 3 +···+ 1 /n−logn)≈ 0. 5772157mayalsobedefinedbyγ=−Γ′( 1 ).
We now return to the Riemann zeta function.
Proposition 11The function Z(s)=π−s/^2 Γ(s/ 2 )ζ(s)satisfies the functional equa-
tion
Z(s)=Z( 1 −s)for 0 <σ< 1.Proof From the representation (9) of the gamma function we obtain, forσ>0and
n≥1,