3 Birkhoff’s Ergodic Theorem 471
Suppose now that (i) holds and let f∈L(X,B,μ). Then the functionf∗in the
statement of Theorem 17 must be constant a.e. Moreover, ifγis its constant value, we
must have
γ=
∫
X
f∗dμ=
∫
X
fdμ.
Thus (i) implies (ii).
Suppose next that (ii) holds and letA,B∈B. Then, for almost allx∈X,
lim
n→∞
n−^1
n∑− 1
k= 0
χA(Tkx)=
∫
X
χAdμ=μ(A).
Hence, for almost allx∈X,
lim
n→∞
n−^1
∑n−^1
k= 0
χA(Tkx)χB(x)=μ(A)χB(x)
and so, by the dominated convergence theorem,
μ(A)μ(B)=
∫
X
lim
n→∞
n−^1
n∑− 1
k= 0
χA(Tkx)χB(x)dμ(x)
= lim
n→∞
n−^1
n∑− 1
k= 0
∫
X
χA(Tkx)χB(x)dμ(x)
= lim
n→∞
n−^1
n∑− 1
k= 0
μ(T−kA∩B).
Thus (ii) implies (iii).
⋃Suppose now that (iii) holds and chooseC ∈ Bwithμ(C)>0. PutA =
n≥ 0 T
−nCandB=(⋃
n≥ 1 T
−nC)c. Then, for everyk≥1,T−kA⊆⋃
n≥ 1 T
−nC
and henceμ(T−kA∩B)=0. Thus
n−^1
n∑− 1
k= 0
μ(T−kA∩B)=μ(A∩B)/n→0asn→∞.
Sinceμ(A)≥μ(C)>0, it follows from (iii) thatμ(B)=0. Thus (iii) implies (iv).
Next choose anyA,B∈Bsuch thatμ(A)>0,μ(B)>0. If (iv) holds, then
μ(
⋃
n≥ 1 T
−nA)=1 and hence
μ(B)=μ
(
B∩∪
n≥ 1
T−nA
)
=μ
(
∪
n≥ 1
(B∩T−nA)
)
.
Sinceμ(B)>0, it follows thatμ(B∩T−nA)>0forsomen>0. Thus (iv) implies
(v).
Finally chooseA∈BwithT−^1 A=Aand putB=Ac. Then, for everyn≥1,
we haveμ(T−nA∩B)=μ(A∩B)=0. If (v) holds, it follows that eitherμ(A)= 0
orμ(B)=0. Hence (v) implies thatTis ergodic.