522 XII Elliptic Functions
By differentiating with respect tovand then puttingv =0, we obtain in addition
θ 11 ′( 0 )= 2 πiq^1 /^4 Q^30 .But
Q 0 =
∏∞
n= 1
( 1 −qn)( 1 +qn)
=
∏∞
n= 1
( 1 −q^2 n)( 1 −q^2 n−^1 )( 1 +q^2 n)( 1 +q^2 n−^1 ),
which implies
∏∞
n= 1
( 1 −q^2 n−^1 )( 1 +q^2 n)( 1 +q^2 n−^1 )= 1.
It follows that
θ 00 ( 0 )θ 01 ( 0 )θ 10 ( 0 )= 2 q^1 /^4 Q^30
and hence
θ 11 ′( 0 )=πiθ 00 ( 0 )θ 01 ( 0 )θ 10 ( 0 ). (36)
It is evident from their series definitions that, whenqis replaced by−q, the func-
tionsθ 00 andθ 01 are interchanged, whereas the functionsq−^1 /^4 θ 10 andq−^1 /^4 θ 11 are
unaltered. Hence
θ 00 (v;τ+ 1 )=θ 01 (v;τ), θ 10 (v;τ+ 1 )=eπi/^4 θ 10 (v;τ),
θ 01 (v;τ+ 1 )=θ 00 (v;τ), θ 11 (v;τ+ 1 )=eπi/^4 θ 11 (v;τ).
(37)
From Proposition 3 we obtain also the transformation formulas
θ 00 (v;− 1 /τ)=(τ/i)^1 /^2 eπiτv
2
θ 00 (τv;τ),
θ 10 (v;− 1 /τ)=(τ/i)^1 /^2 eπiτv
2
θ 01 (τv;τ),
θ 01 (v;− 1 /τ)=(τ/i)^1 /^2 eπiτv
2
θ 10 (τv;τ),
θ 11 (v;− 1 /τ)=−i(τ/i)^1 /^2 eπiτv
2
θ 11 (τv;τ).
(38)
Up to this point we have used Hermite’s notation just to dress up old results in new
clothes. The next result breaks fresh ground.
Proposition 4Fo r a l lv,w∈Candτ∈H,
θ 00 (v;τ)θ 00 (w;τ)=θ 00 (v+w; 2 τ)θ 00 (v−w; 2 τ)+θ 10 (v+w; 2 τ)θ 10 (v−w; 2 τ),
θ 10 (v;τ)θ 10 (w;τ)=θ 10 (v+w; 2 τ)θ 00 (v−w; 2 τ)+θ 00 (v+w; 2 τ)θ 10 (v−w; 2 τ),
θ 00 (v;τ)θ 01 (w;τ)=θ 01 (v+w; 2 τ)θ 01 (v−w; 2 τ)+θ 11 (v+w; 2 τ)θ 11 (v−w; 2 τ),
θ 01 (v;τ)θ 01 (w;τ)=θ 00 (v+w; 2 τ)θ 00 (v−w; 2 τ)−θ 10 (v+w; 2 τ)θ 10 (v−w; 2 τ),
θ 10 (v;τ)θ 11 (w;τ)=θ 11 (v+w; 2 τ)θ 01 (v−w; 2 τ)−θ 01 (v+w; 2 τ)θ 11 (v−w; 2 τ),
θ 11 (v;τ)θ 11 (w;τ)=θ 10 (v+w; 2 τ)θ 00 (v−w; 2 τ)−θ 00 (v+w; 2 τ)θ 10 (v−w; 2 τ).