8 Selected References 539
Many geometrical properties of a lattice are reflected in its theta function. However, a
lattice is not uniquely determined by its theta function, since there are lattices inR^4
(and in higher dimensions) which are not isometric but have the same theta function.
For applications of elliptic functions and theta functions to classical mechanics,
conformal mapping, geometry, theoretical chemistry, statistical mechanics and approxi-
mation theory, see Halphen [15] (vol. 2), Kober [19], Boset al.[7], Glasser and
Zucker [14], Baxter [5] and Todd [28]. Applications to number theory will be
considered in the next chapter.
8 SelectedReferences
[1] N.H. Abel,Oeuvres compl`etes,Tome 1, 2nd ed. (ed. L. Sylow et S. Lie), Grondahl,
Christiania, 1881. [Reprinted J. Gabay, Sceaux, 1992]
[2] L.V. Ahlfors,Complex analysis, 3rd ed., McGraw-Hill, New York, 1979.
[3] N.I. Akhiezer,Elements of the theory of elliptic functions, American Mathematical
Society, Providence, R.I., 1990. [English transl. of 2nd Russian edition, 1970]
[4] W. Bartky, Numerical calculation of a generalized complete elliptic integral,Rev. Modern
Phys. 10 (1938), 264–269.
[5] R.J. Baxter,Exactly solved models in statistical mechanics, Academic Press, London,
- [Reprinted, 1989]
[6] A.A. Belavin and V.G. Drinfeld, Triangle equations and simple Lie algebras,Soviet Sci.
Rev. Sect. C: Math. Phys. 4 (1984), 93–165. [Reprinted, Harwood, Amsterdam, 1998]
[7] H.J.M. Bos, C. Kers, F. Oort and D.W. Raven, Poncelet’s closure theorem,Exposition.
Math. 5 (1987), 289–364.
[8] P.F. Byrd and M.D. Friedman,Handbook of elliptic integrals for engineers and scientists,
2nd ed., Springer, Berlin, 1971.
[9] D.A. Cox, The arithmetic-geometric mean of Gauss,Enseign. Math. 30 (1984), 275–330.
[10] L. Euler,Opera omnia, Ser. I, Vol. XX (ed. A. Krazer), Leipzig, 1912.
[11] M. Falk, Beweis eines Satzes aus der Theorie der elliptischen Functionen,Acta Math. 7
(1885/6), 197–200.
[12] R. Fricke,Elliptische Funktionen, Encyklop ̈adie der Mathematischen Wissenschaften,
Band II, Teil 2, pp. 177–348, Teubner, Leipzig, 1921.
[13] C.F. Gauss,We r k e, Band III, G ̈ottingen, 1866. [Reprinted G. Olms, Hildesheim, 1973]
[14] M.L. Glasser and I.J. Zucker, Lattice sums,Theoretical chemistry: Advances and
perspectives 5 (1980), 67–139.
[15] G.H. Halphen,Trait ́e des fonctions elliptiques et de leurs applications, 3vols.,
Gauthier-Villars, Paris, 1886–1891.
[16] C.G.J. Jacobi,Gesammelte Werke,Band I (ed. C.W. Borchardt), Berlin, 1881. [Reprinted
Chelsea, New York, 1969]
[17] V.G. Kac and D.H. Peterson, Infinite-dimensional Lie algebras, theta functions and
modular forms,Adv. in Math. 53 (1984), 125–264.
[18] T. Kasper, Integration in finite terms: the Liouville theory,Math. Mag. 53 (1980), 195–201.
[19] H. Kober,Dictionary of conformal representations, Dover, New York, 1952.
[20] A. Krazer, Zur Geschichte des Umkehrproblems der Integral,Jahresber. Deutsch.
Math.-Verein. 18 (1909), 44–75.
[21] J.L. Lagrange,Oeuvres,t. 2 (ed. J.-A. Serret), Gauthier-Villars, Paris, 1868. [Reprinted
G. Olms, Hildesheim, 1973]
[22] A.M. Legendre,Trait ́e des fonctions elliptiques et des int ́egrales Eul ́eriennes, avec des
tables pour enfaciliter le calcul num ́erique, Paris, t.1 (1825), t.2 (1826), t.3 (1828).
[Microform, Readex Microprint Corporation, New York, 1970]