546 XIII Connections with Number Theory
In the same way that we proved Proposition 3 we may show that, if|x|<1, then
1 /( 1 −x)( 1 −x^2 )···( 1 −xm)= 1 +
∑
n≥ 1
pm(n)xn,
wherepm(n)is the number of partitions ofninto parts not exceedingm.
From the vast number of formulas involving partitions and their generating func-
tions we select only one more pair, the celebratedRogers–Ramanujan identities.The
proof of these identities will be based on the following preliminary result:
Proposition 5If|q|< 1 and|x|<|q|−^1 ,then
1 +
∑
n≥ 1
xnqn
2
/(q)n=
∑
n≥ 0
(− 1 )nx^2 nq^5 n(n+^1 )/^2 −^2 n{ 1 −x^2 q^2 (^2 n+^1 )}/(q)n(xqn+^1 )∞,
where(a) 0 = 1 ,
(a)n=( 1 −a)( 1 −aq)···( 1 −aqn−^1 ) if n≥ 1 , and
(a)∞=( 1 −a)( 1 −aq)( 1 −aq^2 )···.
Proof Consider theq-difference equation
f(x)=f(xq)+xq f(xq^2 ).
A formal power series
∑
n≥ 0 anx
nsatisfies this equation if and only if
an( 1 −qn)=an− 1 q^2 n−^1 (n≥ 1 ).
Thus the only formal power series solution witha 0 =1is
f(x)= 1 +xq/( 1 −q)+x^2 q^4 /( 1 −q)( 1 −q^2 )
+x^3 q^9 /( 1 −q)( 1 −q^2 )( 1 −q^3 )+···.
Moreover, if|q|<1, this power series converges for allx∈C.
If|q|<1, the functions
F(x)=
∑
n≥ 0
(− 1 )nx^2 nq^5 n(n+^1 )/^2 −^2 n{ 1 −x^2 q^2 (^2 n+^1 )}/(q)n(xqn+^1 )∞,
G(x)=
∑
n≥ 0
(− 1 )nx^2 nq^5 n(n+^1 )/^2 −n{ 1 −xq^2 n+^1 }/(q)n(xqn+^1 )∞
are holomorphic for|x|<|q|−^1.