Number Theory: An Introduction to Mathematics

(ff) #1
8 Selected References 585

[21] J.E. Cremona,Algorithms for modular elliptic curves, 2nd ed., Cambridge University
Press, 1997.
[22] H. Darmon, A proof of the full Shimura–Taniyama–Weil conjecture is announced,Notices
Amer. Math. Soc. 46 (1999), 1397–1401.
[23] L.E. Dickson,History of the theory of numbers, 3 vols., Carnegie Institute, Washington,
D.C., 1919–1923. [Reprinted Chelsea, New York, 1992]
[24] L. Ehrenpreis and R.C. Gunning (ed.),Theta functions:Bowdoin1987, Proc. Symp. Pure
Math. 49 , Amer. Math. Soc., Providence, R.I., 1989.
[25] N.D. Elkies, OnA^4 +B^4 +C^4 =D^4 ,Math. Comp. 51 (1988), 825–835.
[26] L.D. Faddeev and L.A. Takhtajan,Hamiltonian methods in soliton theory, Springer-Verlag,
Berlin, 1987.
[27] A.S. Fokas and V.E. Zakharov (ed.),Important developments in soliton theory, Springer-
Verlag, Berlin, 1993.
[28] S. Gelbart, Elliptic curves and automorphic representations,Adv. in Math. 21 (1976),
235–292.
[29] S. Gelbart, An elementary introduction to the Langlands program,Bull. Amer. Math. Soc.
(N.S.) 10 (1984), 177–219.
[30] D. Goldfeld, Gauss’ class number problem for imaginary quadratic fields,Bull. Amer.
Math. Soc.(N.S.) 13 (1985), 23–37.
[31] E. Grosswald,Representations of integers as sums of squares, Springer-Verlag, New York,
1985.
[32] M. Hindry and J.H. Silverman,Diophantine geometry, Springer, New York, 2000.
[33] J.C. Jantzen,Lectures on quantum groups, American Mathematical Society, Providence,
R.I., 1996.
[34] V.F.R. Jones,Subfactors and knots, CBMS Regional Conference Series in Mathematics
80 , Amer. Math. Soc., Providence, R.I., 1991.
[35] V.G. Kac,Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, 1990.
[36] A.A. Kirillov, Jr., Lectures on affine Hecke algebras and Macdonald’s conjectures,Bull.
Amer. Math. Soc.(N.S.) 34 (1997), 251–292.
[37] A.W. Knapp,Elliptic curves, Princeton University Press, Princeton, N.J., 1992.
[38] V.E. Korepin, N.M. Bogoliubov and A.G. Izergin,Quantum inverse scattering method
and correlation functions, Cambridge University Press, 1993.
[39] S. Lang,Introduction to modular forms, Springer-Verlag, Berlin, corr. reprint, 1995.
[40] M. Laska, An algorithm for finding a minimal Weierstrass equation for an elliptic curve,
Math. Comp. 38 (1982), 257–260.
[41] J.H. van Lint and R.M. Wilson,A course in combinatorics, Cambridge University Press,
1992.
[42] S.C. Milne, New infinite families of exact sums of squares formulas, Jacobi elliptic func-
tions and Ramanujan’s tau function,Proc. Nat. Acad. Sci. U.S.A. 93 (1996), 15004–15008.
[43] K. Noda and H. Wada, All congruent numbers less than 10000,Proc. Japan Acad. Ser.
A Math. Sci. 69 (1993), 175–178.
[44] J. Oesterl ́e, Le probl`eme de Gauss sur le nombre de classes,Enseign. Math. 34 (1988),
43–67.
[45] M. Okado, M. Jimbo and T.Miwa, Solvable lattice models in two dimensions and modular
functions,Sugaku Exp. 2 (1989), 29–54.
[46] H. Rademacher,Topics in analytic number theory, Springer-Verlag, Berlin, 1973.
[47] K.A. Ribet, Galois representations and modular forms,Bull. Amer. Math. Soc.(N.S.) 32
(1995), 375–402.
[48] N. Schappacher, D ́eveloppement de la loi de groupe sur une cubique,S ́eminaire de Th ́eorie
des Nombres, Paris1988–89 (ed. C. Goldstein), pp. 159–184, Birkh ̈auser, Boston, 1990.
[49] J.-P. Serre,A course in arithmetic, Springer-Verlag, New York, 1973.

Free download pdf