Number Theory: An Introduction to Mathematics

(ff) #1

Notations........................................................


∈,/∈,=,=,∅,⊆,⊂,∪,∩, 2


B\A,Ac,3
A×B,An,aRb,3
Ra,f:A→B,f(a),f(A),4
iA,g◦f, 4
f−^1 ,N, 1 ,S(n),5
sm(n), 6
a+b,pm(n),a·b,7
<,≤,>,≥,8
In,9
#(E),10
∼,Z,+,11
0 ,−a,b−a,·,1, 12
P,−P,13
P+P,P·P,a^2 ,a<b,14
a/b,Z×,∼,Q,15
+,·,a−^1 ,16
P,−P, 16, 17
P,A<B,18
A+B,19
AB,20
R√,∼,22
a,a^1 /^2 ,bn,n



a,a^1 /n,R,23
limn→∞,an→l,n→∞,24
inf,sup,limn→∞,limn→∞,24
[a,b], 26
|a|,d(a,b),27
βδ(x),A,intA,Rn,|a|,28
|a| 1 ,|a| 2 ,Fn 2 , 28
C(I),|f|,|f| 1 ,|f| 2 ,C(R),F∞ 2 ,29
limn→∞an=a,an→a,30
E,31
L(I),L^2 (I),32

φ′(x 0 ),33
|A|,34
Br,35
e, 38, 187
et, 39, 45
lnx,logx,39
C,i,40
z ̄,Rz,Iz,41
cosz,sinz,45
π, 46, 48, 186, 217, 364, 509
H,A,n(A),t(A),49
i,j,k,51
V(u),52
〈x,y〉,SU 2 (C),SO 3 (R),S^3 ,P^3 (R),53
SO 4 (R),O,ε,53
α,n(α),54
e,a−^1 ,55
ab,HK,56
Sn,sgn(α),An,57
Ha,G/H,58
an,<a>,<S>,59
Na,G×G′,60
Mn(Z),P(X),A+B,AB,61
na,a−^1 ,R×,62
R/S,63
R⊕R′,αv,v+w,Dn,64
C(I),O,C^1 (I),U 1 +U 2 ,U 1 ⊕U 2 , 65
<S>,66
dimV,[E:F],e 1 ,...,en,Tv,TS,67
S+T,GL(V),Mn(F),68
V ⊗V′,T⊗T′,68
Mn(D),69
〈u,v〉,‖v‖,71
Free download pdf