Number Theory: An Introduction to Mathematics

(ff) #1
588 Notations

B,74
^2 ,L^2 (I),75
∗R,76

b|a,ba,×,(a,b),83
[a,b], 84
a∧b,a∨b,85
(a 1 ,a 2 ,...,an),[a 1 ,a 2 ,...,an], 86
K[t], 87, 96
K(t), 88, 262
mCn, 92, 111
∂(f),|f|,R[t],R[[t]], 96
K[t,t−^1 ], 98
c(f), 100
R[t 1 ,...,tm], 101
Φp(x), 102
f′, 103
δ(a), 104
Q(


d),Od, 105
a≡bmodm,≡, 106
Z(m), 107
Z×(m), 108
Fp,φ(m), 109
Φn(x), 111, 112
f ̄(x), 111
F×p, 114
G,N(γ), 119
H,γ ̄, 120
N(γ),(α,β)r, 121
x,g(k),w(k), 122
G(k), 123
K[[t 1 ,...,tm]], 124
Fq, 125

(a/n),sgn(πa), 130
(a/p), 133
G(m,n), 137
Q(


d),α′, 140
N(α),ω,Od,G,E, 141
(a 1 ,...,am),AB, 145
A′, 146
h(d),O(K), 151
f∗g, 152
δ(n),A,|f|, 153
i(n),j(n), 154
τ(n),σ(n), 155
μ(n),fˆ(n), 156


Mp, 158
γ, 159, 380
Fn, 160
GLn(Z), 162
A⊕B, 163, 301
M 1 ∩M 2 ,M 1 +M 2 , 166
∆k, 171
|a|, 173
(f/g), 174

ξ,ξn,τ, 179
[a 0 ,a 1 ,a 2 ,...], 179, 182, 212
pn,qn, 180
pn/qn, 181, 212
[a 0 ,a 1 ,...,aN], 182
M(ξ), 190
D, 191
ζ′, 192
[a 0 ,...,am− 1 ,am,...,am+h− 1 ], 192
C, 198
H, 201
Γ,SL 2 (Z),T(z),S(z), 202
R(z),∂(F), 203
F ̄, 204
τ(f), 206
h†(D), 206, 207
H/Γ, 209, 218
Γ(n),ξ(k),μk, 210
|f|,f,{f}, 211
PSL 2 (R), 218

detA, 224-229
Mn,diag[α 11 ,α 22 ,...,αnn], 225
SLn(F),At, 226, 229
‖v‖, 229, 234
A⊗B, 231
Jm, 232, 248
em, 233, 248
2-(v,k,λ), 247
t-(v,k,λ), 250
Cp,An,PSLn(q), 251
M 12 ,M 11 ,M 24 ,M 23 ,M 22 , 251
|x|, 254
[n,k,d],C(H),G 24 ,R( 1 ,m), 255

Cζ((z)),Cζ[[z]],|a|, 261
|a|∞,vp(a),|a|p,K(t), 262
Free download pdf