Number Theory: An Introduction to Mathematics

(ff) #1
Notations 589

|f|∞,vp(f),|f|p, 262
K((t)), 263
F, 270, 271
Qp,‖a‖, 271
R,M,U, 274
Zp, 275
π,k, 276
f(x), 280


F×,F×^2 ,(u,v), 292
f∼g,detV,U⊥,V 1 ⊥V 2 , 293
indV, 296
ind+V,ind−V, 297
τw, 300
A⊕B, 301
V≈V′,W(F),(a,b)F, 303
fa,Ga,Q∞,(a,b)∞,(a,b)p, 304
fa,b,Ga,b, 307
sF(f),sp(f), 310
Qv,||v,(a,b)v, 313
(a,b/F), 324


χ(x),λ(S), 327
κn, 328, 348, 380
‖q‖, 329


, 331
d(Λ),Π, 333
intS,Λ∗, 334
Bε, 337
μi(K,Λ),∆(K), 339
K∗, 340
|x|, 341
d(y,z),‖x‖,(y,z), 342
Hx,Gx,Gx, 342
V(x 0 ),βr(x 0 ), 342
V(Λ), 344
BR,m(Λ), 345
γ(Λ),γn, 347
δ(K),δn, 348
e 1 ,...,en,An,Dn,E 8 ,E 7 ,E 6 , 350
Λ 24 , 351
Ln,Λk→Λ, 352
h(K,K′), 352, 353

π(x),logx, 364
lognx,Li(x),pn, 365
θ(x),ψ(x), 367
y, 368


Λ(n),ζ(s), 370
σ,t, 371
kˆ(u),k(t), 374, 375
θ(x),Γ(z),z!, 379
B(x,y),κn,γ,Z(s), 380
α∗, 382
γn,γ ̃n, 384
|A|,ζK(s), 384
πK(x),ZK(s), 385
N(P),N(A),ζL(s), 386
τ(n), 388
M(x), 390
π 2 (x),L 2 (x),C 2 , 392

π(x;m,a),θ(x;m,a), 400
ψ(x;m,a),e,χ, 400
χ 1 ,Gˆ,g, 401
Gm, 403
L(s,χ), 404
Λ(s,χ), 409
ρ, 410, 434
ρR, 410
ρ⊗σ,ρU, 411
trA, 414
χ(s), 414, 434
g,δil,αij(μ),nμ, 415
χμ,χR, 416
Ck,hk,χik, 418
Ck,Ck′, 418
σ,σ, ̃ A ̃(s), 419
ψ( ̃ s), 420
λ,ψvi, 421
Sn,An,Cn,ω, 423
Kρ, 426
C 0 (G),M(f), 432
f ̄,(f,g),μ(E),Lp(G),f∗g, 433
H,ρ,χ(s),Gˆ, 434
fˆ,μˆ, 435
C(G), 436
SU( 2 ),S^3 , 437
SO( 3 ), 438
Tn, 439
GL(n),O(n),U(n),Sp(n), 440
[u,v],gl(n,R),gl(n,C), 440
An,Bn,Cn,Dn,L(G), 440
G ̃, 441
G 2 ,F 4 ,E 6 ,E 7 ,E 8 , 442
SU(n),SO(n),Spin(n), 442
Free download pdf