Number Theory: An Introduction to Mathematics

(ff) #1
Index 609

totient function, 110
trace of
matrix, 414
quaternion, 49–50
transcendental element, 386
transcendental number, 174, 578, 583
transformation formulas
for elliptic functions, 512, 528–529,
538
for theta functions, 377–379, 520,
522
transitive
law, 8
relation, 4
translation, 346
of torus, 472, 483
transpose of a matrix, 227, 229
triangle inequality, 27, 262
triangular matrix, 229
trichotomy law, 8
trigonometric
functions, 45–47, 77
polynomial, 450, 488
trivial
absolute value, 262, 273
character, 401
representation, 410
ring, 62
TW-conjecture, 574, 578, 580, 584, 586
twin prime, 392–393, 395
twistedL-functions, 574
2-design, 247–250, 258
type (A) Hilbert field, 308–310
type (B) Hilbert field, 308–311


ultrametric inequality, 262, 273, 277
uniform distribution, texts, 488
uniformization theorem, 218
uniformly distributed mod 1, 448–458
union of sets, 2–3, 61
unique factorization domain, 90
unit, 62, 87, 108, 144–145, 153
unit circle, 47–48
unit tangent bundle, 481–482
unitary
group, 440, 442
matrix, 53, 437


representation, 412, 434, 437
symplectic group, 440, 442
universal quadratic form, 295, 297
upper
bound, 19, 22
density, 484
half-plane, 201, 208–209, 519, 531,
534
limit, 24
triangular matrix, 229

valuation
ideal, 274–276
ring, 88, 274–276
valuation theory, texts, 290
value, 4
group, 262–263, 274, 276
valued field, 261–264
van der Corput’s
difference theorem, 454, 458
sequence, 463, 464
van der Waerden’s theorem, 485–488,
490
vector, 64
space, 64–70
vertex of polytope, 343
volume, 327
von Mangoldt function, 370, 372
Voronoi cell, 342–346, 349, 359
of lattice, 344–346, 353–357, 359
Voronoi diagram, 358

Waring’s problem, 122–123, 126
weak Hasse principle, 317
Wedderburn’s theorem on
finite division rings, 125
simple algebras, 69
Weierstrass approximation theorem, 74,
450, 488
weighing, 233–236, 257
matrix, 234–236, 257
weight of vector, 254–256
Weil conjectures, 387–388, 395
Weyl’s criterion, 451
Wiener’s Tauberian theorem, 367, 394
Wiles’ theorem, 575, 580, 584
Williamson type, 233
Free download pdf