Higher Engineering Mathematics

(Greg DeLong) #1
184 GEOMETRY AND TRIGONOMETRY

i.e. instantaneous power,
p=25[cosπ/ 6 −cos (2ωt−π/6)]

Now try the following exercise.

Exercise 83 Further problems on changing
products of sines and cosines into sums or
differences

In Problems 1 to 5, express as sums or differ-
ences:


  1. sin 7tcos 2t


[ 1
2 (sin 9t+sin 5t)

]


  1. cos 8xsin 2x


[ 1
2 (sin 10x−sin 6x)

]


  1. 2 sin 7tsin 3t [cos 4t−cos 10t]

  2. 4 cos 3θcosθ [2(cos 4θ+cos 2θ)]

  3. 3 sin


π
3

cos

π
6

[
3
2

(
sin

π
2

+sin

π
6

)]


  1. Determine



2 sin 3t[costdt


cos 4t
4


cos 2t
2

+c

]


  1. Evaluate


∫ π
2

0

4 cos 5xcos 2xdx

[

20
21

]


  1. Solve the equation: 2 sin 2φsinφ=cosφin
    the rangeφ=0toφ= 180 ◦.
    [30◦,90◦or 150◦]


18.5 Changing sums or differences of


sines and cosines into products


In the compound-angle formula let,

(A+B)=X
and
(A−B)=Y

Solving the simultaneous equations gives:

A=

X+Y
2

andB=

X−Y
2

Thus sin(A+B)+sin(A−B)=2 sinAcosB
becomes,


sinX+sinY

=2 sin

(
X+Y
2

)
cos

(
X−Y
2

)
(5)

Similarly,

sinX−sinY

=2 cos

(
X+Y
2

)
sin

(
X−Y
2

)
(6)

cosX+cosY

=2 cos

(
X+Y
2

)
cos

(
X−Y
2

)
(7)

cosX−cosY

=−2 sin

(
X+Y
2

)
sin

(
X−Y
2

)
(8)

Problem 18. Express sin 5θ+sin 3θ as a
product.

From equation (5),

sin 5θ+sin 3θ=2 sin

(
5 θ+ 3 θ
2

)
cos

(
5 θ− 3 θ
2

)

=2 sin 4θcosθ

Problem 19. Express sin 7x−sinx as a
product.

From equation (6),

sin 7x−sinx=2 cos

(
7 x+x
2

)
sin

(
7 x−x
2

)

=2 cos 4xsin 3x

Problem 20. Express cos 2t−cos 5t as a
product.

From equation (8),

cos 2t−cos 5t=−2 sin

(
2 t+ 5 t
2

)
sin

(
2 t− 5 t
2

)

=−2 sin

7
2

tsin

(

3
2

t

)
=2 sin

7
2

tsin

3
2

t
(
since sin

(

3
2

t

)
=−sin

3
2

t

)

Problem 21. Show that

cos 6x+cos 2x
sin 6x+sin 2x

=cot 4x.
Free download pdf