184 GEOMETRY AND TRIGONOMETRY
i.e. instantaneous power,
p=25[cosπ/ 6 −cos (2ωt−π/6)]
Now try the following exercise.
Exercise 83 Further problems on changing
products of sines and cosines into sums or
differences
In Problems 1 to 5, express as sums or differ-
ences:
- sin 7tcos 2t
[ 1
2 (sin 9t+sin 5t)
]
- cos 8xsin 2x
[ 1
2 (sin 10x−sin 6x)
]
- 2 sin 7tsin 3t [cos 4t−cos 10t]
- 4 cos 3θcosθ [2(cos 4θ+cos 2θ)]
- 3 sin
π
3
cos
π
6
[
3
2
(
sin
π
2
+sin
π
6
)]
- Determine
∫
2 sin 3t[costdt
−
cos 4t
4
−
cos 2t
2
+c
]
- Evaluate
∫ π
2
0
4 cos 5xcos 2xdx
[
−
20
21
]
- Solve the equation: 2 sin 2φsinφ=cosφin
the rangeφ=0toφ= 180 ◦.
[30◦,90◦or 150◦]
18.5 Changing sums or differences of
sines and cosines into products
In the compound-angle formula let,
(A+B)=X
and
(A−B)=Y
Solving the simultaneous equations gives:
A=
X+Y
2
andB=
X−Y
2
Thus sin(A+B)+sin(A−B)=2 sinAcosB
becomes,
sinX+sinY
=2 sin
(
X+Y
2
)
cos
(
X−Y
2
)
(5)
Similarly,
sinX−sinY
=2 cos
(
X+Y
2
)
sin
(
X−Y
2
)
(6)
cosX+cosY
=2 cos
(
X+Y
2
)
cos
(
X−Y
2
)
(7)
cosX−cosY
=−2 sin
(
X+Y
2
)
sin
(
X−Y
2
)
(8)
Problem 18. Express sin 5θ+sin 3θ as a
product.
From equation (5),
sin 5θ+sin 3θ=2 sin
(
5 θ+ 3 θ
2
)
cos
(
5 θ− 3 θ
2
)
=2 sin 4θcosθ
Problem 19. Express sin 7x−sinx as a
product.
From equation (6),
sin 7x−sinx=2 cos
(
7 x+x
2
)
sin
(
7 x−x
2
)
=2 cos 4xsin 3x
Problem 20. Express cos 2t−cos 5t as a
product.
From equation (8),
cos 2t−cos 5t=−2 sin
(
2 t+ 5 t
2
)
sin
(
2 t− 5 t
2
)
=−2 sin
7
2
tsin
(
−
3
2
t
)
=2 sin
7
2
tsin
3
2
t
(
since sin
(
−
3
2
t
)
=−sin
3
2
t
)
Problem 21. Show that
cos 6x+cos 2x
sin 6x+sin 2x
=cot 4x.