FUNCTIONS AND THEIR CURVES 195C
0 π
2π3π
22π θ13
y = cos θ + 2y = cos θ(b)Figure 19.14
π
2π 3 π
20 2 π x− 11yπ
3y = sin x− π 3y = sinx(a)π(^3) ( )
π
2
π 3 π
2
(^02) πx
− 1
1
y
π
4
y = sin x+ π 4
y = sinx
π
4
(b)
( )
Figure 19.15
Figure 19.16
For example, if f(x)=(x−1)^2 , and a=
1
2
, then
f(ax)=
(x
2
− 1
) 2
.
Both of these curves are shown in Fig. 19.17(a).
Similarly,y=cosx andy=cos 2x are shown in
Fig. 19.17(b).