VECTORS, PHASORS AND THE COMBINATION OF WAVEFORMS 235
D
Using the sine rule:
3
sinφ
=
4. 64
sin 135◦
from which
sinφ=
3 sin 135◦
4. 64
= 0. 4572
Henceφ=sin−^10. 4572 = 27 ◦ 12 ′or 0.475 rad.
By calculation,
yR= 4 .64 sin (ωt+ 0 .475)
Problem 13. Two alternating voltages are
given byv 1 =15 sinωtvolts and
v 2 =25sin (ωt−π/6) volts. Determine a sinu-
soidal expression for the resultantvR=v 1 +v 2
by finding horizontal and vertical components.
The relative positions ofv 1 andv 2 at timet=0 are
shown in Fig. 21.25(a) and the phasor diagram is
shown in Fig. 21.25(b).
Figure 21.25
The horizontal component ofvR,
H=15 cos 0◦+25 cos (− 30 ◦)
=oa+ab= 36 .65 V
The vertical component ofvR,
V=15 sin 0◦+25 sin (− 30 ◦)
=bc=− 12 .50 V
Hence vR(=oc)=
√
[(36.65)^2 +(− 12 .50)^2 ]
by Pythagoras’ theorem
= 38 .72V
tanφ=
V
H
(
=
bc
ob
)
=
− 12. 50
36. 65
=− 0. 3411
from which, φ=tan−^1 (− 0 .3411)=− 18 ◦ 50 ′
or−0.329 radians.
HencevR=v 1 +v 2 = 38 .72 sin(ωt− 0. 329 )V.
Problem 14. For the voltages in Problem 13,
determine the resultantvR=v 1 −v 2.
To find the resultantvR=v 1 −v 2 , the phasorv 2 of
Fig. 21.25(b) is reversed in direction as shown in
Fig. 21.26. Using the cosine rule:
v^2 R= 152 + 252 −2(15)(25) cos 30◦
= 225 + 625 − 649. 5 = 200. 5
vR=
√
(200.5)= 14 .16 V
Figure 21.26
Using the sine rule:
25
sinφ
=
14. 16
sin 30◦
from which
sinφ=
25 sin 30◦
14. 16
= 0. 8828
Henceφ=sin−^10. 8828 = 61. 98 ◦or 118.02◦. From
Fig. 21.26,φis obtuse,
henceφ= 118. 02 ◦or 2.06 radians.
HencevR=v 1 −v 2 = 14 .16 sin (ωt+ 2 .06) V.