VECTORS, PHASORS AND THE COMBINATION OF WAVEFORMS 235D
Using the sine rule:3
sinφ=4. 64
sin 135◦from whichsinφ=3 sin 135◦
4. 64= 0. 4572Henceφ=sin−^10. 4572 = 27 ◦ 12 ′or 0.475 rad.By calculation,yR= 4 .64 sin (ωt+ 0 .475)Problem 13. Two alternating voltages are
given byv 1 =15 sinωtvolts and
v 2 =25sin (ωt−π/6) volts. Determine a sinu-
soidal expression for the resultantvR=v 1 +v 2
by finding horizontal and vertical components.The relative positions ofv 1 andv 2 at timet=0 are
shown in Fig. 21.25(a) and the phasor diagram is
shown in Fig. 21.25(b).
Figure 21.25
The horizontal component ofvR,
H=15 cos 0◦+25 cos (− 30 ◦)=oa+ab= 36 .65 VThe vertical component ofvR,
V=15 sin 0◦+25 sin (− 30 ◦)=bc=− 12 .50 VHence vR(=oc)=√
[(36.65)^2 +(− 12 .50)^2 ]by Pythagoras’ theorem= 38 .72Vtanφ=V
H(
=bc
ob)=− 12. 50
36. 65=− 0. 3411from which, φ=tan−^1 (− 0 .3411)=− 18 ◦ 50 ′
or−0.329 radians.HencevR=v 1 +v 2 = 38 .72 sin(ωt− 0. 329 )V.Problem 14. For the voltages in Problem 13,
determine the resultantvR=v 1 −v 2.To find the resultantvR=v 1 −v 2 , the phasorv 2 of
Fig. 21.25(b) is reversed in direction as shown in
Fig. 21.26. Using the cosine rule:v^2 R= 152 + 252 −2(15)(25) cos 30◦= 225 + 625 − 649. 5 = 200. 5vR=√
(200.5)= 14 .16 VFigure 21.26Using the sine rule:
25
sinφ=14. 16
sin 30◦from whichsinφ=25 sin 30◦
14. 16= 0. 8828Henceφ=sin−^10. 8828 = 61. 98 ◦or 118.02◦. From
Fig. 21.26,φis obtuse,henceφ= 118. 02 ◦or 2.06 radians.HencevR=v 1 −v 2 = 14 .16 sin (ωt+ 2 .06) V.