252 COMPLEX NUMBERS
number and its complex conjugate is always a
real number.
For example,
(3+j4)(3−j4)= 9 −j 12 +j 12 −j^216
= 9 + 16 = 25
[(a+jb)(a−jb) may be evaluated ‘on sight’ as
a^2 +b^2 ].
(iii)Division of complex numbersis achieved by
multiplying both numerator and denominator
by the complex conjugate of the denominator.
For example,
2 −j 5
3 +j 4
=
2 −j 5
3 +j 4
×
(3−j4)
(3−j4)
=
6 −j 8 −j 15 +j^220
32 + 42
=
− 14 −j 23
25
=
− 14
25
−j
23
25
or− 0. 56 −j 0. 92
Problem 5. IfZ 1 = 1 −j3,Z 2 =− 2 +j5 and
Z 3 =− 3 −j4, determine ina+jbform:
(a)Z 1 Z 2 (b)
Z 1
Z 3
(c)
Z 1 Z 2
Z 1 +Z 2
(d)Z 1 Z 2 Z 3
(a)Z 1 Z 2 =(1−j3)(− 2 +j5)
=− 2 +j 5 +j 6 −j^215
=(− 2 +15)+j(5+6), sincej^2 =−1,
= 13 +j 11
(b)
Z 1
Z 3
=
1 −j 3
− 3 −j 4
=
1 −j 3
− 3 −j 4
×
− 3 +j 4
− 3 +j 4
=
− 3 +j 4 +j 9 −j^212
32 + 42
=
9 +j 13
25
=
9
25
+ j
13
25
or 0. 36 +j 0. 52
(c)
Z 1 Z 2
Z 1 +Z 2
=
(1−j3)(− 2 +j5)
(1−j3)+(− 2 +j5)
=
13 +j 11
− 1 +j 2
, from part (a),
=
13 +j 11
− 1 +j 2
×
− 1 −j 2
− 1 −j 2
=
− 13 −j 26 −j 11 −j^222
12 + 22
=
9 −j 37
5
=
9
5
−j
37
5
or 1. 8 −j 7. 4
(d) Z 1 Z 2 Z 3 =(13+j11)(− 3 −j4), since
Z 1 Z 2 = 13 +j11, from part (a)
=− 39 −j 52 −j 33 −j^244
=(− 39 +44)−j(52+33)
= 5 −j 85
Problem 6. Evaluate:
(a)
2
(1+j)^4
(b) j
(
1 +j 3
1 −j 2
) 2
(a) (1+j)^2 =(1+j)(1+j)= 1 +j+j+j^2
= 1 +j+j− 1 =j 2
(1+j)^4 =[(1+j)^2 ]^2 =(j2)^2 =j^24 =− 4
Hence
2
(1+j)^4
=
2
− 4
=−
1
2
(b)
1 +j 3
1 −j 2
=
1 +j 3
1 −j 2
×
1 +j 2
1 +j 2
=
1 +j 2 +j 3 +j^26
12 + 22
=
− 5 +j 5
5
=− 1 +j 1 =− 1 +j
(
1 +j 3
1 −j 2
) 2
=(− 1 +j)^2 =(− 1 +j)(− 1 +j)
= 1 −j−j+j^2 =−j 2