Higher Engineering Mathematics

(Greg DeLong) #1
252 COMPLEX NUMBERS

number and its complex conjugate is always a
real number.

For example,

(3+j4)(3−j4)= 9 −j 12 +j 12 −j^216
= 9 + 16 = 25

[(a+jb)(a−jb) may be evaluated ‘on sight’ as
a^2 +b^2 ].

(iii)Division of complex numbersis achieved by
multiplying both numerator and denominator
by the complex conjugate of the denominator.


For example,
2 −j 5
3 +j 4

=

2 −j 5
3 +j 4

×

(3−j4)
(3−j4)

=

6 −j 8 −j 15 +j^220
32 + 42

=

− 14 −j 23
25

=

− 14
25

−j

23
25

or− 0. 56 −j 0. 92

Problem 5. IfZ 1 = 1 −j3,Z 2 =− 2 +j5 and
Z 3 =− 3 −j4, determine ina+jbform:

(a)Z 1 Z 2 (b)

Z 1
Z 3
(c)

Z 1 Z 2
Z 1 +Z 2

(d)Z 1 Z 2 Z 3

(a)Z 1 Z 2 =(1−j3)(− 2 +j5)

=− 2 +j 5 +j 6 −j^215

=(− 2 +15)+j(5+6), sincej^2 =−1,

= 13 +j 11

(b)

Z 1
Z 3

=

1 −j 3
− 3 −j 4

=

1 −j 3
− 3 −j 4

×

− 3 +j 4
− 3 +j 4

=

− 3 +j 4 +j 9 −j^212
32 + 42

=

9 +j 13
25

=

9
25

+ j

13
25

or 0. 36 +j 0. 52

(c)

Z 1 Z 2
Z 1 +Z 2

=

(1−j3)(− 2 +j5)
(1−j3)+(− 2 +j5)

=

13 +j 11
− 1 +j 2

, from part (a),

=

13 +j 11
− 1 +j 2

×

− 1 −j 2
− 1 −j 2

=

− 13 −j 26 −j 11 −j^222
12 + 22

=

9 −j 37
5

=

9
5

−j

37
5

or 1. 8 −j 7. 4

(d) Z 1 Z 2 Z 3 =(13+j11)(− 3 −j4), since

Z 1 Z 2 = 13 +j11, from part (a)

=− 39 −j 52 −j 33 −j^244

=(− 39 +44)−j(52+33)

= 5 −j 85

Problem 6. Evaluate:

(a)

2
(1+j)^4

(b) j

(
1 +j 3
1 −j 2

) 2

(a) (1+j)^2 =(1+j)(1+j)= 1 +j+j+j^2

= 1 +j+j− 1 =j 2

(1+j)^4 =[(1+j)^2 ]^2 =(j2)^2 =j^24 =− 4

Hence

2
(1+j)^4

=

2
− 4

=−

1
2

(b)

1 +j 3
1 −j 2

=

1 +j 3
1 −j 2

×

1 +j 2
1 +j 2

=

1 +j 2 +j 3 +j^26
12 + 22

=

− 5 +j 5
5

=− 1 +j 1 =− 1 +j

(
1 +j 3
1 −j 2

) 2
=(− 1 +j)^2 =(− 1 +j)(− 1 +j)

= 1 −j−j+j^2 =−j 2
Free download pdf