258 COMPLEX NUMBERS
(c) Impedance,Z
= 15 ∠− 60 ◦=15[ cos (− 60 ◦)+jsin (− 60 ◦)]
= 7. 50 −j 12. 99
Henceresistance= 7. 50
and capacitive reac-
tance,XC= 12. 99
SinceXC=
1
2 πfC
thencapacitance,
C=
1
2 πfXC
=
106
2 π(50)(12.99)
μF
= 245 μF
Problem 16. An alternating voltage of 240 V,
50 Hz is connected across an impedance of
(60−j100). Determine (a) the resistance
(b) the capacitance (c) the magnitude of the
impedance and its phase angle and (d) the current
flowing.
(a) ImpedanceZ=(60−j100).
Henceresistance= 60
(b) Capacitive reactance XC= 100 and since
XC=
1
2 πfC
then
capacitance,C=
1
2 πfXC
=
1
2 π(50)(100)
=
106
2 π(50)(100)
μF
= 31. 83 μF
(c) Magnitude of impedance,
|Z|=
√
[(60)^2 +(−100)^2 ]= 116. 6
Phase angle, argZ=tan−^1
(
− 100
60
)
=− 59 ◦ 2 ′
(d) Current flowing,I=
V
Z
=
240 ∠ 0 ◦
116. 6 ∠− 59 ◦ 2 ′
= 2. 058 ∠ 59 ◦ 2 ′A
The circuit and phasor diagrams are as shown in
Fig. 23.8(b).
Problem 17. For the parallel circuit shown in
Fig. 23.9, determine the value of currentIand
its phase relative to the 240 V supply, using
complex numbers.
R 1 = 4 Ω (^) XL = 3 Ω
R 2 = 10 Ω
R 3 = 12 Ω XC = 5 Ω
l
240 V, 50 Hz
Figure 23.9
CurrentI=
V
Z
. ImpedanceZfor the three-branch
parallel circuit is given by:
1
Z
=
1
Z 1
+
1
Z 2
+
1
Z 3
,
whereZ 1 = 4 +j3,Z 2 =10 andZ 3 = 12 −j 5
Admittance, Y 1 =
1
Z 1
=
1
4 +j 3
=
1
4 +j 3
×
4 −j 3
4 −j 3
=
4 −j 3
42 + 32
= 0. 160 −j 0 .120 siemens
Admittance, Y 2 =
1
Z 2
=
1
10
= 0 .10 siemens
Admittance, Y 3 =
1
Z 3
=
1
12 −j 5
=
1
12 −j 5
×
12 +j 5
12 +j 5
=
12 +j 5
122 + 52
= 0. 0710 +j 0 .0296 siemens
Total admittance, Y=Y 1 +Y 2 +Y 3
=(0. 160 −j 0 .120)+(0.10)
+(0. 0710 +j 0 .0296)
= 0. 331 −j 0. 0904
= 0. 343 ∠− 15 ◦ 17 ′siemens