E
Complex numbers
24
De Moivre’s theorem
24.1 Introduction
From multiplication of complex numbers in polar
form,
(r∠θ)×(r∠θ)=r^2 ∠ 2 θSimilarly, (r∠θ)×(r∠θ)×(r∠θ)=r^3 ∠ 3 θ, and so on.
In general,De Moivre’s theoremstates:
[r∠θ]n=rn∠nθThe theorem is true for all positive, negative and frac-
tional values ofn. The theorem is used to determine
powers and roots of complex numbers.
24.2 Powers of complex numbers
For example [3∠ 20 ◦]^4 = 34 ∠(4× 20 ◦)= 81 ∠ 80 ◦by
De Moivre’s theorem.
Problem 1. Determine, in polar form
(a) [2∠ 35 ◦]^5 (b) (− 2 +j3)^6.(a) [2∠ 35 ◦]^5 = 25 ∠(5× 35 ◦),from De Moivre’s theorem= 32 ∠ 175 ◦(b) (− 2 +j3)=
√
[(−2)^2 +(3)^2 ]∠tan−^13
− 2=√
13 ∠ 123. 69 ◦, since− 2 +j 3
lies in the second quadrant(− 2 +j3)^6 =[√
13 ∠ 123. 69 ◦]^6=(√
13)^6 ∠(6× 123. 69 ◦),
by De Moivre’s theorem
= 2197 ∠ 742. 14 ◦
= 2197 ∠ 382. 14 ◦(since 742. 14
≡ 742. 14 ◦− 360 ◦= 382. 14 ◦)= 2197 ∠ 22. 14 ◦(since 382. 14 ◦≡ 382. 14 ◦− 360 ◦= 22. 14 ◦)or 2197 ∠ 22 ◦ 8 ′Problem 2. Determine the value of (− 7 +j5)^4 ,
expressing the result in polar and rectangular
forms.(− 7 +j5)=√
[(−7)^2 + 52 ]∠tan−^15
− 7=√
74 ∠ 144. 46 ◦
(Note, by considering the Argand diagram,− 7 +j 5
must represent an angle in the second quadrant and
notin the fourth quadrant.)Applying De Moivre’s theorem:(− 7 +j5)^4 =[√
74 ∠ 144. 46 ◦]^4=√
744 ∠ 4 × 144. 46 ◦= 5476 ∠ 577. 84 ◦= 5476 ∠ 217. 84 ◦or5476 ∠ 217 ◦ 15 ′in polar form
Sincer∠θ=rcosθ+jrsinθ,5476 ∠ 217. 84 ◦=5476 cos 217. 84 ◦+j5476 sin 217. 84 ◦=− 4325 −j 3359i.e. (− 7 +j5)^4 =− 4325 −j 3359in rectangular formNow try the following exercise.Exercise 105 Further problems on powers
of complex numbers- Determine in polar form (a) [1. 5 ∠ 15 ◦]^5
(b) (1+j2)^6.
[(a) 7. 594 ∠ 75 ◦ (b) 125∠ 20 ◦ 37 ′]