Higher Engineering Mathematics

(Greg DeLong) #1
264 COMPLEX NUMBERS


  1. (− 2 +j)


1
4


Moduli 1.223, arguments
38 ◦ 22 ′, 128◦ 22 ′,
218 ◦ 22 ′and 308◦ 22 ′




  1. (− 6 −j5)


1

(^2) [
Moduli 2.795, arguments
109 ◦ 54 ′, 289◦ 54 ′
]



  1. (4−j3)


− 2
[^3
Moduli 0.3420, arguments 24◦ 35 ′,
144 ◦ 35 ′and 264◦ 35 ′

]


  1. For a transmission line, the characteristic
    impedanceZ 0 and the propagation coefficient
    γare given by:


Z 0 =

√(
R+jωL
G+jωC

)
and

γ=


[(R+jωL)(G+jωC)]

GivenR= 25 ,L= 5 × 10 −^3 H,
G= 80 × 10 −^6 siemens,C= 0. 04 × 10 −^6 F
and ω= 2000 πrad/s, determine, in polar

form,Z 0 andγ.

[
Z 0 = 390. 2 ∠− 10. 43 ◦,
γ= 0. 1029 ∠ 61. 92 ◦

]

24.4 The exponential form of a


complex number


Certain mathematical functions may be expressed as
power series (for example, by Maclaurin’s series—
see Chapter 8), three example being:

(i) ex= 1 +x+

x^2
2!

+

x^3
3!

+

x^4
4!

+

x^5
5!

+··· (1)

(ii) sinx=x−

x^3
3!

+

x^5
5!


x^7
7!

+··· (2)

(iii) cosx= 1 −

x^2
2!

+

x^4
4!


x^6
6!

+··· (3)

Replacingxin equation (1) by the imaginary number
jθgives:

ejθ= 1 +jθ+

(jθ)^2
2!

+

(jθ)^3
3!

+

(jθ)^4
4!

+

(jθ)^5
5!

+···

= 1 +jθ+

j^2 θ^2
2!

+

j^3 θ^3
3!

+

j^4 θ^4
4!

+

j^5 θ^5
5!

+···

By definition,j=


(−1), hencej^2 =−1,j^3 =−j,
j^4 =1,j^5 =j, and so on.

Thus ejθ= 1 +jθ−

θ^2
2!

−j

θ^3
3!

+

θ^4
4!

+j

θ^5
5!

− ···

Grouping real and imaginary terms gives:

ejθ=

(
1 −

θ^2
2!

+

θ^4
4!

−···

)

+j

(

θ−

θ^3
3!

+

θ^5
5!

−···

)

However, from equations (2) and (3):
(
1 −

θ^2
2!

+

θ^4
4!

−···

)
=cosθ

and

(

θ−

θ^3
3!

+

θ^5
5!

−···

)

=sinθ

Thus ejθ=cosθ+jsinθ (4)

Writing−θforθin equation (4), gives:

ej(−θ)=cos(−θ)+jsin(−θ)

However, cos(−θ)=cosθand sin (−θ)=−sinθ

Thus e−jθ=cosθ−jsinθ (5)

The polar form of a complex number z is:
z=r(cosθ+jsinθ). But, from equation (4),
cosθ+jsinθ=ejθ.

Therefore z=rejθ

When a complex number is written in this way, it is
said to be expressed inexponential form.
There are therefore three ways of expressing a
complex number:

1.z=(a+jb), called Cartesian or rectangu-
lar form,

2.z=r(cosθ+jsinθ)orr∠θ, calledpolar form,
and

3.z=rejθcalledexponential form.

The exponential form is obtained from the polar
form. For example, 4∠ 30 ◦becomes 4ej

π

(^6) in expo-
nential form. (Note that inrejθ,θmust be in radians.)

Free download pdf