Higher Engineering Mathematics

(Greg DeLong) #1

266 COMPLEX NUMBERS



  1. Express 2e^3 +j


π

(^6) in (a+jb) form.
[34. 79 +j 20 .09]



  1. Convert 1.7e^1.^2 −j^2.^5 into rectangular form.
    [− 4. 52 −j 3 .38]

  2. Ifz=7ej^2.^1 , determine lnz(a) in Cartesian
    form, and (b) in polar form.⎡



(a) ln 7+j 2. 1
(b) 2. 86 ∠ 47. 18 ◦or
2. 86 ∠ 0. 82




  1. Givenz=4e^1.^5 −j^2 , determine lnzin polar
    form. [3. 51 ∠− 34. 72 ◦or 3. 51 ∠− 0 .61]

  2. Determine in polar form (a) ln(2+j5)
    (b) ln (− 4 −j3)





(a) 2. 06 ∠ 35. 26 ◦or
2. 06 ∠ 0. 615
(b) 4. 11 ∠ 66. 96 ◦or
4. 11 ∠ 1. 17





  1. When displaced electrons oscillate about an
    equilibrium position the displacementxis
    given by the equation:


x=Ae

{
− 2 htm+j


(4mf−h^2 )
2 m−a t

}

Determine the real part ofxin terms oft,
assuming (4mf−h^2 ) is positive.
[
Ae−

ht
2 mcos

(√
(4mf−h^2 )
2 m−a

)
t

]
Free download pdf