270 MATRICES AND DETERMINANTS
In algebra, the commutative law of multiplication
states thata×b=b×a. For matrices, this law is
only true in a few special cases, and in generalA×B
isnotequal toB×A.
Problem 9. IfA=
(
23
10
)
and
B=
(
23
01
)
show thatA×B=B×A.
A×B=
(
23
10
)
×
(
23
01
)
=
(
[(2×2)+(3×0)] [(2×3)+(3×1)]
[(1×2)+(0×0)] [(1×3)+(0×1)]
)
=
(
49
23
)
B×A=
(
23
01
)
×
(
23
10
)
=
(
[(2×2)+(3×1)] [(2×3)+(3×0)]
[(0×2)+(1×1)] [(0×3)+(1×0)]
)
=
(
76
10
)
Since
(
49
23
)
=
(
76
10
)
, thenA×B=B×A
Now try the following exercise.
Exercise 108 Further problems on addition,
subtraction and multiplication of matrices
In Problems 1 to 13, the matricesAtoKare:
A=
(
3 − 1
− 47
)
B=
⎛
⎜
⎝
1
2
2
3
−
1
3
−
3
5
⎞
⎟
⎠
C=
(
− 1. 37. 4
2. 5 − 3. 9
)
D=
(
4 − 76
− 240
57 − 4
)
E=
⎛ ⎜ ⎜ ⎜ ⎜ ⎝
36
1
2
5 −
2
3
7
− 10
3
5
⎞ ⎟ ⎟ ⎟ ⎟ ⎠
F=
(
3. 12. 46. 4
− 1. 63. 8 − 1. 9
5. 33. 4 − 4. 8
)
G=
⎛
⎜
⎝
3
4
1
2
5
⎞
⎟
⎠
H=
(
− 2
5
)
J=
(
4
− 11
7
)
K=
(
10
01
10
)
Addition, subtraction and multiplication
In Problems 1 to 12, perform the matrix opera-
tion stated.
1.A+B
⎡
⎢
⎣
⎛
⎜
⎝
3
1
2
−
1
3
− 4
1
3
6
2
5
⎞
⎟
⎠
⎤
⎥
⎦
2.D+E
⎡ ⎢ ⎢ ⎢ ⎢ ⎣
⎛ ⎜ ⎜ ⎜ ⎜ ⎝
7 − 16
1
2
33
1
3
7
47 − 3
2
5
⎞ ⎟ ⎟ ⎟ ⎟ ⎠
⎤ ⎥ ⎥ ⎥ ⎥ ⎦
3.A−B
⎡
⎢
⎣
⎛
⎜
⎝
2
1
2
− 1
2
3
− 3
2
3
7
3
5
⎞
⎟
⎠
⎤
⎥
⎦
4.A+B−C
[(
4. 8 − 7. 73 ̇
− 6. 8 ̇ 310. 3
)]
- 5A+ 6 B
[(
18. 0 − 1. 0
− 22. 031. 4
)]
- 2D+ 3 E− 4 F[(
4. 6 − 5. 6 − 12. 1 - 4 − 9. 228. 6
− 14. 20. 413. 0
)]
7.A×H
[(
− 11
43
)]
8.A×B
⎡
⎢
⎣
⎛
⎜
⎝
1
5
6
2
3
5
− 4
1
3
− 6
13
15
⎞
⎟
⎠
⎤
⎥
⎦
9.A×C
[(
− 6. 426. 1
22. 7 − 56. 9
)]
10.D×J
[(
135
− 52
− 85
)]