270 MATRICES AND DETERMINANTS
In algebra, the commutative law of multiplication
states thata×b=b×a. For matrices, this law is
only true in a few special cases, and in generalA×B
isnotequal toB×A.
Problem 9. IfA=(
23
10)
andB=(
23
01)
show thatA×B=B×A.A×B=(
23
10)
×(
23
01)=(
[(2×2)+(3×0)] [(2×3)+(3×1)]
[(1×2)+(0×0)] [(1×3)+(0×1)])=(
49
23)B×A=(
23
01)
×(
23
10)=(
[(2×2)+(3×1)] [(2×3)+(3×0)]
[(0×2)+(1×1)] [(0×3)+(1×0)])=(
76
10)Since
(
49
23)
=(
76
10)
, thenA×B=B×ANow try the following exercise.
Exercise 108 Further problems on addition,
subtraction and multiplication of matricesIn Problems 1 to 13, the matricesAtoKare:A=(
3 − 1
− 47)
B=⎛⎜
⎝1
22
3−1
3−3
5⎞⎟
⎠C=(
− 1. 37. 4
2. 5 − 3. 9)D=(
4 − 76
− 240
57 − 4)E=⎛ ⎜ ⎜ ⎜ ⎜ ⎝
361
2
5 −2
37− 103
5⎞ ⎟ ⎟ ⎟ ⎟ ⎠F=(
3. 12. 46. 4
− 1. 63. 8 − 1. 9
5. 33. 4 − 4. 8)G=⎛⎜
⎝3
412
5⎞⎟
⎠H=(
− 2
5)
J=(
4
− 11
7)K=(
10
01
10)Addition, subtraction and multiplicationIn Problems 1 to 12, perform the matrix opera-
tion stated.1.A+B⎡⎢
⎣⎛⎜
⎝31
2−1
3− 41
362
5⎞⎟
⎠⎤⎥
⎦2.D+E⎡ ⎢ ⎢ ⎢ ⎢ ⎣
⎛ ⎜ ⎜ ⎜ ⎜ ⎝
7 − 161
2
331
3747 − 32
5⎞ ⎟ ⎟ ⎟ ⎟ ⎠
⎤ ⎥ ⎥ ⎥ ⎥ ⎦3.A−B⎡⎢
⎣⎛⎜
⎝21
2− 12
3− 32
373
5⎞⎟
⎠⎤⎥
⎦4.A+B−C[(
4. 8 − 7. 73 ̇
− 6. 8 ̇ 310. 3)]- 5A+ 6 B
[(
18. 0 − 1. 0
− 22. 031. 4)]- 2D+ 3 E− 4 F[(
4. 6 − 5. 6 − 12. 1 - 4 − 9. 228. 6
− 14. 20. 413. 0
)]7.A×H[(
− 11
43)]8.A×B⎡⎢
⎣⎛⎜
⎝15
623
5− 41
3− 613
15⎞⎟
⎠⎤⎥
⎦9.A×C[(
− 6. 426. 1
22. 7 − 56. 9)]10.D×J[(
135
− 52
− 85)]