Higher Engineering Mathematics

(Greg DeLong) #1

270 MATRICES AND DETERMINANTS


In algebra, the commutative law of multiplication
states thata×b=b×a. For matrices, this law is
only true in a few special cases, and in generalA×B
isnotequal toB×A.


Problem 9. IfA=

(
23
10

)
and

B=

(
23
01

)
show thatA×B=B×A.

A×B=

(
23
10

)
×

(
23
01

)

=

(
[(2×2)+(3×0)] [(2×3)+(3×1)]
[(1×2)+(0×0)] [(1×3)+(0×1)]

)

=

(
49
23

)

B×A=

(
23
01

)
×

(
23
10

)

=

(
[(2×2)+(3×1)] [(2×3)+(3×0)]
[(0×2)+(1×1)] [(0×3)+(1×0)]

)

=

(
76
10

)

Since


(
49
23

)
=

(
76
10

)
, thenA×B=B×A

Now try the following exercise.


Exercise 108 Further problems on addition,
subtraction and multiplication of matrices

In Problems 1 to 13, the matricesAtoKare:

A=

(
3 − 1
− 47

)
B=




1
2

2
3


1
3


3
5




C=

(
− 1. 37. 4
2. 5 − 3. 9

)

D=

(
4 − 76
− 240
57 − 4

)

E=

⎛ ⎜ ⎜ ⎜ ⎜ ⎝
36

1
2
5 −

2
3

7

− 10

3
5

⎞ ⎟ ⎟ ⎟ ⎟ ⎠

F=

(
3. 12. 46. 4
− 1. 63. 8 − 1. 9
5. 33. 4 − 4. 8

)

G=




3
4

1

2
5




H=

(
− 2
5

)
J=

(
4
− 11
7

)

K=

(
10
01
10

)

Addition, subtraction and multiplication

In Problems 1 to 12, perform the matrix opera-
tion stated.

1.A+B







3

1
2


1
3

− 4

1
3

6

2
5







2.D+E

⎡ ⎢ ⎢ ⎢ ⎢ ⎣
⎛ ⎜ ⎜ ⎜ ⎜ ⎝
7 − 16

1
2
33

1
3

7

47 − 3

2
5

⎞ ⎟ ⎟ ⎟ ⎟ ⎠
⎤ ⎥ ⎥ ⎥ ⎥ ⎦

3.A−B







2

1
2

− 1

2
3

− 3

2
3

7

3
5







4.A+B−C

[(
4. 8 − 7. 73 ̇
− 6. 8 ̇ 310. 3

)]


  1. 5A+ 6 B


[(
18. 0 − 1. 0
− 22. 031. 4

)]


  1. 2D+ 3 E− 4 F[(
    4. 6 − 5. 6 − 12. 1

  2. 4 − 9. 228. 6
    − 14. 20. 413. 0


)]

7.A×H

[(
− 11
43

)]

8.A×B







1

5
6

2

3
5

− 4

1
3

− 6

13
15







9.A×C

[(
− 6. 426. 1
22. 7 − 56. 9

)]

10.D×J

[(
135
− 52
− 85

)]
Free download pdf