Higher Engineering Mathematics

(Greg DeLong) #1
THE THEORY OF MATRICES AND DETERMINANTS 271

F

11.E×K

⎡ ⎢ ⎢ ⎢ ⎢ ⎣
⎛ ⎜ ⎜ ⎜ ⎜ ⎝
3

1
2

6

12 −

2
3

2
5

0

⎞ ⎟ ⎟ ⎟ ⎟ ⎠
⎤ ⎥ ⎥ ⎥ ⎥ ⎦

12.D×F

[(
55. 43. 410. 1
− 12. 610. 4 − 20. 4
− 16. 925. 037. 9

)]


  1. Show thatA⎡×C=C×A







A×C=

(
− 6. 426. 1
22. 7 − 56. 9

)

C×A=

(
− 33. 5 − 53. 1
23. 1 − 29. 8

)

Hence they are not equal

⎤ ⎥ ⎥ ⎥ ⎥ ⎦

25.3 The unit matrix


Aunit matrix,I, is one in which all elements
of the leading diagonal () have a value of 1 and
all other elements have a value of 0. Multiplication
of a matrix byIis the equivalent of multiplying by
1 in arithmetic.


25.4 The determinant ofa2by2


matrix


Thedeterminantofa2by2matrix,


(
ab
cd

)
is

defined as (ad−bc).
The elements of the determinant of a matrix are
written between vertical lines. Thus, the determinant


of


(
3 − 4
16

)
is written as





3 − 4
16




∣and is equal to

(3×6)−(− 4 ×1), i.e. 18−(−4) or 22. Hence the
determinant of a matrix can be expressed as a single


numerical value, i.e.






3 − 4
16




∣=22.

Problem 10. Determine the value of




3 − 2
74

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

3 − 2
74




∣=(3×4)−(−^2 ×7)

= 12 −(−14)= 26

Problem 11. Evaluate





(1+j) j 2
−j3(1−j4)

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

(1+j) j 2
−j3(1−j4)




∣=(1+j)(1−j4)−(j2)(−j3)

= 1 −j 4 +j−j^24 +j^26
= 1 −j 4 +j−(−4)+(−6)
since from Chapter 23,j^2 =− 1
= 1 −j 4 +j+ 4 − 6
=− 1 −j 3

Problem 12. Evaluate





5 ∠ 30 ◦ 2 ∠− 60 ◦
3 ∠ 60 ◦ 4 ∠− 90 ◦

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

5 ∠ 30 ◦ 2 ∠− 60 ◦
3 ∠ 60 ◦ 4 ∠− 90 ◦




∣=(5∠^30

◦)(4∠− 90 ◦)

−(2∠− 60 ◦)(3∠ 60 ◦)
=(20∠− 60 ◦)−(6∠ 0 ◦)
=(10−j 17 .32)−(6+j0)
=(4−j17.32)or17.78∠− 77 ◦

Now try the following exercise.

Exercise 109 Further problems on 2 by 2
determinants


  1. Calculate the determinant of


(
3 − 1
− 47

)

[17]


  1. Calculate the determinant of




1
2

2
3


1
3


3
5




[

7
90

]


  1. Calculate the determinant of(
    − 1. 37. 4
    2. 5 − 3. 9


)
[−13.43]


  1. Evaluate






j 2 −j 3
(1+j) j




∣ [−^5 +j3]


  1. Evaluate






2 ∠ 40 ◦ 5 ∠− 20 ◦
7 ∠− 32 ◦ 4 ∠− 117 ◦





[
(− 19. 75 +j 19 .79)
or 27. 95 ∠ 134. 94 ◦

]
Free download pdf