274 MATRICES AND DETERMINANTS
Problem 16. Determine the value of
∣
∣
∣
∣
∣j2(1+j)3
(1−j)1j
0 j 45∣
∣
∣
∣
∣Using the first column, the value of the determinant is:
(j2)∣
∣
∣
∣1 j
j 45∣
∣
∣
∣−(1−j)∣
∣
∣
∣(1+j)3
j 45∣
∣
∣
∣+(0)∣
∣
∣
∣(1+j)3
1 j∣
∣
∣
∣=j2(5−j^2 4)−(1−j)(5+j 5 −j12)+ 0=j2(9)−(1−j)(5−j7)=j 18 −[5−j 7 −j 5 +j^2 7]=j 18 −[− 2 −j12]=j 18 + 2 +j 12 = 2 +j 30 or30.07∠86.19◦Now try the following exercise.
Exercise 111 Further problems on 3 by 3
determinants- Find the matrix of minors of
(
4 − 76
− 240
57 − 4
)[(
− 16 8 − 34
− 14 − 46 63
− 24 12 2)]- Find the matrix of cofactors of
(
4 − 76
− 240
57 − 4
)[(
− 16 − 8 − 34
14 − 46 − 63
− 24 − 12 2)]- Calculate the determinant of
(
4 − 76
− 240
57 − 4
)[−212]- Evaluate
∣
∣
∣
∣
∣8 − 2 − 10
2 − 3 − 2
63 8∣
∣
∣
∣
∣[−328]- Calculate the determinant of
(
3. 12. 46. 4
− 1. 63. 8 − 1. 9
- 4 − 4. 8
)[−242.83]- Evaluate
∣
∣
∣
∣
∣j 22 j
(1+j)1− 3
5 −j 40∣
∣
∣
∣
∣[− 2 −j]- Evaluate
∣
∣
∣
∣
∣3 ∠ 60 ◦ j 21
0(1+j)2∠ 30 ◦
02 j 5∣ ∣ ∣ ∣ ∣ [26. 94 ∠− 139. 52 ◦or
(− 20. 49 −j 17 .49)]- Find the eigenvaluesλthat satisfy the follow-
ing equations:
(a)∣
∣
∣
∣(2−λ)2
−1(5−λ)∣
∣
∣
∣=^0(b)∣
∣
∣
∣
∣(5−λ)7 − 5
0(4−λ) − 1
28(− 3 −λ)∣
∣
∣
∣
∣= 0(You may need to refer to chapter 1, pages
8–11, for the solution of cubic equations).[(a)λ=3or4 (b)λ=1or2or3]25.7 The inverse or reciprocal of a
3 by 3 matrixTheadjointof a matrixAis obtained by:
(i) forming a matrixBof the cofactors ofA, and(ii)transposingmatrixBto giveBT, whereBTis
the matrix obtained by writing the rows ofB
as the columns ofBT. ThenadjA=BT.Theinverse of matrixA,A−^1 is given byA−^1 =adjA
|A|where adjAis the adjoint of matrixAand|A|is the
determinant of matrixA.