274 MATRICES AND DETERMINANTS
Problem 16. Determine the value of
∣
∣
∣
∣
∣
j2(1+j)3
(1−j)1j
0 j 45
∣
∣
∣
∣
∣
Using the first column, the value of the determinant is:
(j2)
∣
∣
∣
∣
1 j
j 45
∣
∣
∣
∣−(1−j)
∣
∣
∣
∣
(1+j)3
j 45
∣
∣
∣
∣
+(0)
∣
∣
∣
∣
(1+j)3
1 j
∣
∣
∣
∣
=j2(5−j^2 4)−(1−j)(5+j 5 −j12)+ 0
=j2(9)−(1−j)(5−j7)
=j 18 −[5−j 7 −j 5 +j^2 7]
=j 18 −[− 2 −j12]
=j 18 + 2 +j 12 = 2 +j 30 or30.07∠86.19◦
Now try the following exercise.
Exercise 111 Further problems on 3 by 3
determinants
- Find the matrix of minors of
(
4 − 76
− 240
57 − 4
)
[(
− 16 8 − 34
− 14 − 46 63
− 24 12 2
)]
- Find the matrix of cofactors of
(
4 − 76
− 240
57 − 4
)
[(
− 16 − 8 − 34
14 − 46 − 63
− 24 − 12 2
)]
- Calculate the determinant of
(
4 − 76
− 240
57 − 4
)
[−212]
- Evaluate
∣
∣
∣
∣
∣
8 − 2 − 10
2 − 3 − 2
63 8
∣
∣
∣
∣
∣
[−328]
- Calculate the determinant of
(
3. 12. 46. 4
− 1. 63. 8 − 1. 9
- 4 − 4. 8
)
[−242.83]
- Evaluate
∣
∣
∣
∣
∣
j 22 j
(1+j)1− 3
5 −j 40
∣
∣
∣
∣
∣
[− 2 −j]
- Evaluate
∣
∣
∣
∣
∣
3 ∠ 60 ◦ j 21
0(1+j)2∠ 30 ◦
02 j 5
∣ ∣ ∣ ∣ ∣ [
26. 94 ∠− 139. 52 ◦or
(− 20. 49 −j 17 .49)
]
- Find the eigenvaluesλthat satisfy the follow-
ing equations:
(a)
∣
∣
∣
∣
(2−λ)2
−1(5−λ)
∣
∣
∣
∣=^0
(b)
∣
∣
∣
∣
∣
(5−λ)7 − 5
0(4−λ) − 1
28(− 3 −λ)
∣
∣
∣
∣
∣
= 0
(You may need to refer to chapter 1, pages
8–11, for the solution of cubic equations).
[(a)λ=3or4 (b)λ=1or2or3]
25.7 The inverse or reciprocal of a
3 by 3 matrix
Theadjointof a matrixAis obtained by:
(i) forming a matrixBof the cofactors ofA, and
(ii)transposingmatrixBto giveBT, whereBTis
the matrix obtained by writing the rows ofB
as the columns ofBT. ThenadjA=BT.
Theinverse of matrixA,A−^1 is given by
A−^1 =
adjA
|A|
where adjAis the adjoint of matrixAand|A|is the
determinant of matrixA.