Higher Engineering Mathematics

(Greg DeLong) #1

274 MATRICES AND DETERMINANTS


Problem 16. Determine the value of





j2(1+j)3
(1−j)1j
0 j 45






Using the first column, the value of the determinant is:


(j2)





1 j
j 45




∣−(1−j)





(1+j)3
j 45





+(0)





(1+j)3
1 j





=j2(5−j^2 4)−(1−j)(5+j 5 −j12)+ 0

=j2(9)−(1−j)(5−j7)

=j 18 −[5−j 7 −j 5 +j^2 7]

=j 18 −[− 2 −j12]

=j 18 + 2 +j 12 = 2 +j 30 or30.07∠86.19◦

Now try the following exercise.


Exercise 111 Further problems on 3 by 3
determinants


  1. Find the matrix of minors of
    (
    4 − 76
    − 240
    57 − 4


)

[(
− 16 8 − 34
− 14 − 46 63
− 24 12 2

)]


  1. Find the matrix of cofactors of
    (
    4 − 76
    − 240
    57 − 4


)

[(
− 16 − 8 − 34
14 − 46 − 63
− 24 − 12 2

)]


  1. Calculate the determinant of
    (
    4 − 76
    − 240
    57 − 4


)

[−212]


  1. Evaluate







8 − 2 − 10
2 − 3 − 2
63 8






[−328]


  1. Calculate the determinant of
    (
    3. 12. 46. 4
    − 1. 63. 8 − 1. 9



    1. 4 − 4. 8




)

[−242.83]


  1. Evaluate







j 22 j
(1+j)1− 3
5 −j 40






[− 2 −j]


  1. Evaluate







3 ∠ 60 ◦ j 21
0(1+j)2∠ 30 ◦
02 j 5

∣ ∣ ∣ ∣ ∣ [

26. 94 ∠− 139. 52 ◦or
(− 20. 49 −j 17 .49)

]


  1. Find the eigenvaluesλthat satisfy the follow-
    ing equations:


(a)





(2−λ)2
−1(5−λ)




∣=^0

(b)






(5−λ)7 − 5
0(4−λ) − 1
28(− 3 −λ)






= 0

(You may need to refer to chapter 1, pages
8–11, for the solution of cubic equations).

[(a)λ=3or4 (b)λ=1or2or3]

25.7 The inverse or reciprocal of a
3 by 3 matrix

Theadjointof a matrixAis obtained by:
(i) forming a matrixBof the cofactors ofA, and

(ii)transposingmatrixBto giveBT, whereBTis
the matrix obtained by writing the rows ofB
as the columns ofBT. ThenadjA=BT.

Theinverse of matrixA,A−^1 is given by

A−^1 =

adjA
|A|

where adjAis the adjoint of matrixAand|A|is the
determinant of matrixA.
Free download pdf