Higher Engineering Mathematics

(Greg DeLong) #1
THE THEORY OF MATRICES AND DETERMINANTS 275

F

Problem 17. Determine the inverse of the

matrix



34 − 1
207
1 − 3 − 2



The inverse of matrixA,A−^1 =


adjA
|A|

The adjoint ofAis found by:


(i) obtaining the matrix of the cofactors of the
elements, and

(ii) transposing this matrix.


The cofactor of element 3 is+






07
− 3 − 2




∣=21.

The cofactor of element 4 is−






27
1 − 2




∣=11, and
so on.


The matrix of cofactors is


(
21 11 − 6
11 − 513
28 − 23 − 8

)

The transpose of the matrix of cofactors, i.e. the
adjoint of the matrix, is obtained by writing the rows


as columns, and is


(
21 11 28
11 − 5 − 23
− 613 − 8

)

From Problem 14, the determinant of







34 − 1
207
1 − 3 − 2






is 113.

Hence the inverse of


(
34 − 1
207
1 − 3 − 2

)

is

(
21 11 28
11 − 5 − 23
− 613 − 8

)

113

or

1
113

(
21 11 28
11 − 5 − 23
− 613 − 8

)

Problem 18. Find the inverse of
(
15 − 2
3 − 14
− 36 − 7

)

Inverse=

adjoint
determinant

The matrix of cofactors is

(
− 17 9 15
23 − 13 − 21
18 − 10 − 16

)

The transpose of the matrix of cofactors (i.e. the

adjoint) is

(
− 17 23 18
9 − 13 − 10
15 − 21 − 16

)

The determinant of

(
15 − 2
3 − 14
− 36 − 7

)

=1(7−24)−5(− 21 +12)−2(18−3)

=− 17 + 45 − 30 =− 2

Hence the inverse of

(
15 − 2
3 − 14
− 36 − 7

)

=

(
− 17 23 18
9 − 13 − 10
15 − 21 − 16

)

− 2

=

(
8. 5 − 11. 5 − 9
− 4. 56. 55
− 7. 510. 58

)

Now try the following exercise.

Exercise 112 Further problems on the
inverse ofa3by3matrix


  1. Write down the transpose of
    (
    4 − 76
    − 240
    57 − 4


)

[(
4 − 25
− 747
60 − 4

)]


  1. Write down the transpose of



(^3612)
5 −^237
− (^1035)






35 − 1
6 −^230
1
2 7
3
5



Free download pdf