THE THEORY OF MATRICES AND DETERMINANTS 275
F
Problem 17. Determine the inverse of the
matrix
⎛
⎝
34 − 1
207
1 − 3 − 2
⎞
⎠
The inverse of matrixA,A−^1 =
adjA
|A|
The adjoint ofAis found by:
(i) obtaining the matrix of the cofactors of the
elements, and
(ii) transposing this matrix.
The cofactor of element 3 is+
∣
∣
∣
∣
07
− 3 − 2
∣
∣
∣
∣=21.
The cofactor of element 4 is−
∣
∣
∣
∣
27
1 − 2
∣
∣
∣
∣=11, and
so on.
The matrix of cofactors is
(
21 11 − 6
11 − 513
28 − 23 − 8
)
The transpose of the matrix of cofactors, i.e. the
adjoint of the matrix, is obtained by writing the rows
as columns, and is
(
21 11 28
11 − 5 − 23
− 613 − 8
)
From Problem 14, the determinant of
∣
∣
∣
∣
∣
34 − 1
207
1 − 3 − 2
∣
∣
∣
∣
∣
is 113.
Hence the inverse of
(
34 − 1
207
1 − 3 − 2
)
is
(
21 11 28
11 − 5 − 23
− 613 − 8
)
113
or
1
113
(
21 11 28
11 − 5 − 23
− 613 − 8
)
Problem 18. Find the inverse of
(
15 − 2
3 − 14
− 36 − 7
)
Inverse=
adjoint
determinant
The matrix of cofactors is
(
− 17 9 15
23 − 13 − 21
18 − 10 − 16
)
The transpose of the matrix of cofactors (i.e. the
adjoint) is
(
− 17 23 18
9 − 13 − 10
15 − 21 − 16
)
The determinant of
(
15 − 2
3 − 14
− 36 − 7
)
=1(7−24)−5(− 21 +12)−2(18−3)
=− 17 + 45 − 30 =− 2
Hence the inverse of
(
15 − 2
3 − 14
− 36 − 7
)
=
(
− 17 23 18
9 − 13 − 10
15 − 21 − 16
)
− 2
=
(
8. 5 − 11. 5 − 9
− 4. 56. 55
− 7. 510. 58
)
Now try the following exercise.
Exercise 112 Further problems on the
inverse ofa3by3matrix
- Write down the transpose of
(
4 − 76
− 240
57 − 4
)
[(
4 − 25
− 747
60 − 4
)]
- Write down the transpose of
⎛
⎝
(^3612)
5 −^237
− (^1035)
⎞
⎠
⎡
⎣
⎛
⎝
35 − 1
6 −^230
1
2 7
3
5
⎞
⎠
⎤
⎦