Higher Engineering Mathematics

(Greg DeLong) #1
278 MATRICES AND DETERMINANTS

(b) The procedure for solving linear simulta-
neous equations inthree unknowns using
matricesis:
(i) write the equations in the form
a 1 x+b 1 y+c 1 z=d 1
a 2 x+b 2 y+c 2 z=d 2
a 3 x+b 3 y+c 3 z=d 3

(ii) write the matrix equation corresponding
to these equations, i.e.
(
a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3

)

×

(
x
y
z

)

=

(
d 1
d 2
d 3

)

(iii) determine the inverse matrix of
(
a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3

)

(see Chapter 25)

(iv) multiply each side of (ii) by the inverse
matrix, and
(v) solve forx,yandzby equating the
corresponding elements.

Problem 2. Use matrices to solve the simulta-
neous equations:
x+y+z− 4 = 0 (1)
2 x− 3 y+ 4 z− 33 =0(2)
3 x− 2 y− 2 z− 2 = 0 (3)

(i) Writing the equations in thea 1 x+b 1 y+c 1 z=
d 1 form gives:
x+y+z= 4
2 x− 3 y+ 4 z= 33
3 x− 2 y− 2 z= 2
(ii) The matrix equation is
(
111
2 − 34
3 − 2 − 2

)

×

(
x
y
z

)

=

(
4
33
2

)

(iii) The inverse matrix of


A=

(
111
2 − 34
3 − 2 − 2

)

is given by

A−^1 =

adjA
|A|

The adjoint ofAis the transpose of the matrix of
the cofactors of the elements (see Chapter 25).
The matrix of cofactors is
(
14 16 5
0 − 55
7 − 2 − 5

)

and the transpose of this matrix gives

adjA=

(
1407
16 − 5 − 2
55 − 5

)

The determinant ofA, i.e. the sum of the prod-
ucts of elements and their cofactors, using a first
row expansion is

1





− 34
− 2 − 2




∣−^1





24
3 − 2




∣+^1





2 − 3
3 − 2





=(1×14)−(1×(−16))+(1×5)= 35
Hence the inverse ofA,

A−^1 =

1
35

(
1407
16 − 5 − 2
55 − 5

)

(iv) Multiplying each side of (ii) by (iii), and
remembering thatA×A−^1 =I, the unit matrix,
gives
(
100
010
001

)

×

(
x
y
z

)

=

1
35

(
1407
16 − 5 − 2
55 − 5

)

×

(
4
33
2

)

(
x
y
z

)

=

1
35

×

(
(14×4)+(0×33)+(7×2)
(16×4)+((−5)×33)+((−2)×2)
(5×4)+(5×33)+((−5)×2)

)

=

1
35

(
70
− 105
175

)

=

(
2
− 3
5

)

(v) By comparing corresponding elements,x= 2 ,
y=− 3 ,z = 5 , which can be checked in the
original equations.
Free download pdf