278 MATRICES AND DETERMINANTS
(b) The procedure for solving linear simulta-
neous equations inthree unknowns using
matricesis:
(i) write the equations in the form
a 1 x+b 1 y+c 1 z=d 1
a 2 x+b 2 y+c 2 z=d 2
a 3 x+b 3 y+c 3 z=d 3
(ii) write the matrix equation corresponding
to these equations, i.e.
(
a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3
)
×
(
x
y
z
)
=
(
d 1
d 2
d 3
)
(iii) determine the inverse matrix of
(
a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3
)
(see Chapter 25)
(iv) multiply each side of (ii) by the inverse
matrix, and
(v) solve forx,yandzby equating the
corresponding elements.
Problem 2. Use matrices to solve the simulta-
neous equations:
x+y+z− 4 = 0 (1)
2 x− 3 y+ 4 z− 33 =0(2)
3 x− 2 y− 2 z− 2 = 0 (3)
(i) Writing the equations in thea 1 x+b 1 y+c 1 z=
d 1 form gives:
x+y+z= 4
2 x− 3 y+ 4 z= 33
3 x− 2 y− 2 z= 2
(ii) The matrix equation is
(
111
2 − 34
3 − 2 − 2
)
×
(
x
y
z
)
=
(
4
33
2
)
(iii) The inverse matrix of
A=
(
111
2 − 34
3 − 2 − 2
)
is given by
A−^1 =
adjA
|A|
The adjoint ofAis the transpose of the matrix of
the cofactors of the elements (see Chapter 25).
The matrix of cofactors is
(
14 16 5
0 − 55
7 − 2 − 5
)
and the transpose of this matrix gives
adjA=
(
1407
16 − 5 − 2
55 − 5
)
The determinant ofA, i.e. the sum of the prod-
ucts of elements and their cofactors, using a first
row expansion is
1
∣
∣
∣
∣
− 34
− 2 − 2
∣
∣
∣
∣−^1
∣
∣
∣
∣
24
3 − 2
∣
∣
∣
∣+^1
∣
∣
∣
∣
2 − 3
3 − 2
∣
∣
∣
∣
=(1×14)−(1×(−16))+(1×5)= 35
Hence the inverse ofA,
A−^1 =
1
35
(
1407
16 − 5 − 2
55 − 5
)
(iv) Multiplying each side of (ii) by (iii), and
remembering thatA×A−^1 =I, the unit matrix,
gives
(
100
010
001
)
×
(
x
y
z
)
=
1
35
(
1407
16 − 5 − 2
55 − 5
)
×
(
4
33
2
)
(
x
y
z
)
=
1
35
×
(
(14×4)+(0×33)+(7×2)
(16×4)+((−5)×33)+((−2)×2)
(5×4)+(5×33)+((−5)×2)
)
=
1
35
(
70
− 105
175
)
=
(
2
− 3
5
)
(v) By comparing corresponding elements,x= 2 ,
y=− 3 ,z = 5 , which can be checked in the
original equations.