280 MATRICES AND DETERMINANTS
Following the above procedure:
(i) 3x− 4 y− 12 = 0
7 x+ 5 y− 6. 5 = 0
(ii)
x
∣
∣
∣
∣
− 4 − 12
5 − 6. 5
∣
∣
∣
∣
=
−y
∣
∣
∣
∣
3 − 12
7 − 6. 5
∣
∣
∣
∣
=
1
∣
∣
∣
∣
3 − 4
75
∣
∣
∣
∣
i.e.
x
(−4)(− 6 .5)−(−12)(5)
=
−y
(3)(− 6 .5)−(−12)(7)
=
1
(3)(5)−(−4)(7)
i.e.
x
26 + 60
=
−y
− 19. 5 + 84
=
1
15 + 28
i.e.
x
86
=
−y
64. 5
=
1
43
Since
x
86
=
1
43
thenx=
86
43
= 2
and since
−y
64. 5
=
1
43
then y=−
64. 5
43
=− 1. 5
Problem 4. The velocity of a car, accelerating
at uniform accelerationabetween two points, is
given byv=u+at, whereuis its velocity when
passing the first point andtis the time taken
to pass between the two points. Ifv=21 m/s
whent= 3 .5 s andv=33 m/s whent= 6 .1s,
use determinants to find the values ofuanda,
each correct to 4 significant figures.
Substituting the given values inv=u+atgives:
21 =u+ 3. 5 a (1)
33 =u+ 6. 1 a (2)
(i) The equations are written in the form
a 1 x+b 1 y+c 1 =0,
i.e. u+ 3. 5 a− 21 = 0
and u+ 6. 1 a− 33 = 0
(ii) The solution is given by
u
Du
=
−a
Da
=
1
D
whereDuis the determinant of coefficients left
when theucolumn is covered up,
i.e. Du=
∣
∣
∣
∣
∣
3. 5 − 21
6. 1 − 33
∣
∣
∣
∣
∣
=(3.5)(−33)−(−21)(6.1)
=12.6
Similarly, Da=
∣
∣
∣
∣
1 − 21
1 − 33
∣
∣
∣
∣
=(1)(−33)−(−21)(1)
=− 12
and D=
∣
∣
∣
∣
13. 5
16. 1
∣
∣
∣
∣
=(1)(6.1)−(3.5)(1)=2.6
Thus
u
12. 6
=
−a
− 12
=
1
26
i.e. u=
12. 6
2. 6
= 4 .846 m/s
and a=
12
2. 6
= 4 .615 m/s^2 ,
each correct to 4 significant
figures
Problem 5. Applying Kirchhoff’s laws to an
electric circuit results in the following equations:
(9+j12)I 1 −(6+j8)I 2 = 5
−(6+j8)I 1 +(8+j3)I 2 =(2+j4)
Solve the equations forI 1 andI 2
Following the procedure:
(i) (9+j12)I 1 −(6+j8)I 2 − 5 = 0
−(6+j8)I 1 +(8+j3)I 2 −(2+j4)= 0
(ii)
I 1
∣
∣
∣
∣
−(6+j8) − 5
(8+j3) −(2+j4)
∣
∣
∣
∣
=
−I 2
∣
∣
∣
∣
(9+j12) − 5
−(6+j8) −(2+j4)
∣
∣
∣
∣
=
1
∣
∣
∣
∣
(9+j12) −(6+j8)
−(6+j8) (8+j3)
∣
∣
∣
∣