Higher Engineering Mathematics

(Greg DeLong) #1

280 MATRICES AND DETERMINANTS


Following the above procedure:


(i) 3x− 4 y− 12 = 0
7 x+ 5 y− 6. 5 = 0

(ii)

x




− 4 − 12
5 − 6. 5





=

−y




3 − 12
7 − 6. 5





=

1




3 − 4
75





i.e.

x
(−4)(− 6 .5)−(−12)(5)

=

−y
(3)(− 6 .5)−(−12)(7)

=

1
(3)(5)−(−4)(7)

i.e.

x
26 + 60

=

−y
− 19. 5 + 84

=

1
15 + 28

i.e.

x
86

=

−y
64. 5

=

1
43

Since

x
86

=

1
43

thenx=

86
43

= 2

and since

−y
64. 5

=

1
43

then y=−

64. 5
43

=− 1. 5

Problem 4. The velocity of a car, accelerating
at uniform accelerationabetween two points, is
given byv=u+at, whereuis its velocity when
passing the first point andtis the time taken
to pass between the two points. Ifv=21 m/s
whent= 3 .5 s andv=33 m/s whent= 6 .1s,
use determinants to find the values ofuanda,
each correct to 4 significant figures.

Substituting the given values inv=u+atgives:


21 =u+ 3. 5 a (1)
33 =u+ 6. 1 a (2)
(i) The equations are written in the form
a 1 x+b 1 y+c 1 =0,
i.e. u+ 3. 5 a− 21 = 0
and u+ 6. 1 a− 33 = 0

(ii) The solution is given by
u
Du

=

−a
Da

=

1
D

whereDuis the determinant of coefficients left
when theucolumn is covered up,

i.e. Du=






3. 5 − 21

6. 1 − 33






=(3.5)(−33)−(−21)(6.1)
=12.6

Similarly, Da=





1 − 21
1 − 33





=(1)(−33)−(−21)(1)
=− 12

and D=





13. 5
16. 1





=(1)(6.1)−(3.5)(1)=2.6

Thus

u
12. 6

=

−a
− 12

=

1
26

i.e. u=

12. 6
2. 6

= 4 .846 m/s

and a=

12
2. 6

= 4 .615 m/s^2 ,

each correct to 4 significant
figures

Problem 5. Applying Kirchhoff’s laws to an
electric circuit results in the following equations:

(9+j12)I 1 −(6+j8)I 2 = 5
−(6+j8)I 1 +(8+j3)I 2 =(2+j4)

Solve the equations forI 1 andI 2

Following the procedure:

(i) (9+j12)I 1 −(6+j8)I 2 − 5 = 0

−(6+j8)I 1 +(8+j3)I 2 −(2+j4)= 0

(ii)

I 1




−(6+j8) − 5
(8+j3) −(2+j4)





=

−I 2




(9+j12) − 5
−(6+j8) −(2+j4)





=

1




(9+j12) −(6+j8)
−(6+j8) (8+j3)




Free download pdf