Higher Engineering Mathematics

(Greg DeLong) #1
THE SOLUTION OF SIMULTANEOUS EQUATIONS BY MATRICES AND DETERMINANTS 281

F

I 1
(− 20 +j40)+(40+j15)

=

−I 2
(30−j60)−(30+j40)

=

1
(36+j123)−(− 28 +j96)
I 1
20 +j 55

=

−I 2
−j 100

=

1
64 +j 27

HenceI 1 =

20 +j 55
64 +j 27

=

58. 52 ∠ 70. 02 ◦
69. 46 ∠ 22. 87 ◦

= 0. 84 ∠ 47. 15 ◦A

and I 2 =

100 ∠ 90 ◦
69. 46 ∠ 22. 87 ◦
= 1. 44 ∠ 67. 13 ◦A

(b) When solving simultaneous equations inthree
unknowns using determinants:
(i) Write the equations in the form
a 1 x+b 1 y+c 1 z+d 1 = 0
a 2 x+b 2 y+c 2 z+d 2 = 0
a 3 x+b 3 y+c 3 z+d 3 = 0
and then
(ii) the solution is given by
x
Dx


=

−y
Dy

=

z
Dz

=

− 1
D

whereDxis






b 1 c 1 d 1
b 2 c 2 d 2
b 3 c 3 d 3






i.e. the determinant of the coefficients
obtained by covering up thexcolumn.

Dyis






a 1 c 1 d 1
a 2 c 2 d 2
a 3 c 3 d 3






i.e., the determinant of the coefficients
obtained by covering up theycolumn.

Dzis






a 1 b 1 d 1
a 2 b 2 d 2
a 3 b 3 d 3






i.e. the determinant of the coefficients
obtained by covering up thezcolumn.

andDis






a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3






i.e. the determinant of the coefficients
obtained by covering up the constants
column.

Problem 6. A d.c. circuit comprises three
closed loops. Applying Kirchhoff’s laws to the
closed loops gives the following equations for
current flow in milliamperes:

2 I 1 + 3 I 2 − 4 I 3 = 26
I 1 − 5 I 2 − 3 I 3 =− 87
− 7 I 1 + 2 I 2 + 6 I 3 = 12

Use determinants to solve forI 1 ,I 2 andI 3

(i) Writing the equations in the
a 1 x+b 1 y+c 1 z+d 1 =0 form gives:

2 I 1 + 3 I 2 − 4 I 3 − 26 = 0
I 1 − 5 I 2 − 3 I 3 + 87 = 0
− 7 I 1 + 2 I 2 + 6 I 3 − 12 = 0
(ii) the solution is given by
I 1
DI 1

=

−I 2
DI 2

=

I 3
DI 3

=

− 1
D
whereDI 1 is the determinant of coefficients
obtained by covering up theI 1 column, i.e.,

DI 1 =






3 − 4 − 26
− 5 − 387
26 − 12






=(3)





− 387
6 − 12




∣−(−4)





− 587
2 − 12





+(−26)





− 5 − 3
26





=3(−486)+4(−114)−26(−24)
=− 1290

DI 2 =






2 − 4 − 26
1 − 387
− 76 − 12






=(2)(36−522)−(−4)(− 12 +609)
+(−26)(6−21)
=− 972 + 2388 + 390
= 1806
Free download pdf