Higher Engineering Mathematics

(Greg DeLong) #1

282 MATRICES AND DETERMINANTS


DI 3 =






23 − 26
1 − 587
− 72 − 12






=(2)(60−174)−(3)(− 12 +609)

+(−26)(2−35)

=− 228 − 1791 + 858 =− 1161

and D=






23 − 4
1 − 5 − 3
− 726






=(2)(− 30 +6)−(3)(6−21)

+(−4)(2−35)

=− 48 + 45 + 132 = 129

Thus

I 1
− 1290

=

−I 2
1806

=

I 3
− 1161

=

− 1
129

giving

I 1 =

− 1290
− 129

=10 mA,

I 2 =

1806
129

=14 mA

and I 3 =

1161
129

=9mA

Now try the following exercise.


Exercise 114 Further problems on solving
simultaneous equations using determinants

In Problems 1 to 5 usedeterminantsto solve
the simultaneous equations given.


  1. 3x− 5 y=− 17. 6
    7 y− 2 x− 22 = 0
    [x=− 1 .2,y= 2 .8]



    1. 3 m− 4. 4 n= 6. 84

    2. 5 n− 6. 7 m= 1. 23
      [m=− 6 .4,n=− 4 .9]



  2. 3x+ 4 y+z= 10
    2 x− 3 y+ 5 z+ 9 = 0
    x+ 2 y−z= 6
    [x=1,y=2,z=−1]
    4. 1. 2 p− 2. 3 q− 3. 1 r+ 10. 1 = 0
    4. 7 p+ 3. 8 q− 5. 3 r− 21. 5 = 0
    3. 7 p− 8. 3 q+ 7. 4 r+ 28. 1 = 0


[p= 1 .5,q= 4 .5,r= 0 .5]

5.

x
2


y
3

+

2 z
5

=−

1
20
x
4

+

2 y
3


z
2

=

19
40

x+y−z=

59

(^60) [
x=
7
20
,y=
17
40
,z=−
5
24
]



  1. In a system of forces, the relationship
    between two forcesF 1 andF 2 is given by:


5 F 1 + 3 F 2 + 6 = 0
3 F 1 + 5 F 2 + 18 = 0
Use determinants to solve forF 1 andF 2.

[F 1 = 1 .5,F 2 =− 4 .5]


  1. Applying mesh-current analysis to an a.c.
    circuit results in the following equations:


(5−j4)I 1 −(−j4)I 2 = 100 ∠ 0 ◦
(4+j 3 −j4)I 2 −(−j4)I 1 = 0

Solve the equations forI 1 andI 2.
[
I 1 = 10. 77 ∠ 19. 23 ◦A,
I 2 = 10. 45 ∠− 56. 73 ◦A

]


  1. Kirchhoff’s laws are used to determine the
    current equations in an electrical network
    and show that


i 1 + 8 i 2 + 3 i 3 =− 31
3 i 1 − 2 i 2 +i 3 =− 5
2 i 1 − 3 i 2 + 2 i 3 = 6
Use determinants to find the values ofi 1 ,i 2
andi 3. [i 1 =−5,i 2 =−4,i 3 =2]


  1. The forces in three members of a framework
    areF 1 ,F 2 andF 3. They are related by the
    simultaneous equations shown below.


1. 4 F 1 + 2. 8 F 2 + 2. 8 F 3 = 5. 6
4. 2 F 1 − 1. 4 F 2 + 5. 6 F 3 = 35. 0
4. 2 F 1 + 2. 8 F 2 − 1. 4 F 3 =− 5. 6
Free download pdf