282 MATRICES AND DETERMINANTS
DI 3 =
∣
∣
∣
∣
∣
23 − 26
1 − 587
− 72 − 12
∣
∣
∣
∣
∣
=(2)(60−174)−(3)(− 12 +609)
+(−26)(2−35)
=− 228 − 1791 + 858 =− 1161
and D=
∣
∣
∣
∣
∣
23 − 4
1 − 5 − 3
− 726
∣
∣
∣
∣
∣
=(2)(− 30 +6)−(3)(6−21)
+(−4)(2−35)
=− 48 + 45 + 132 = 129
Thus
I 1
− 1290
=
−I 2
1806
=
I 3
− 1161
=
− 1
129
giving
I 1 =
− 1290
− 129
=10 mA,
I 2 =
1806
129
=14 mA
and I 3 =
1161
129
=9mA
Now try the following exercise.
Exercise 114 Further problems on solving
simultaneous equations using determinants
In Problems 1 to 5 usedeterminantsto solve
the simultaneous equations given.
- 3x− 5 y=− 17. 6
7 y− 2 x− 22 = 0
[x=− 1 .2,y= 2 .8]
- 3 m− 4. 4 n= 6. 84
- 5 n− 6. 7 m= 1. 23
[m=− 6 .4,n=− 4 .9]
- 3x+ 4 y+z= 10
2 x− 3 y+ 5 z+ 9 = 0
x+ 2 y−z= 6
[x=1,y=2,z=−1]
4. 1. 2 p− 2. 3 q− 3. 1 r+ 10. 1 = 0
4. 7 p+ 3. 8 q− 5. 3 r− 21. 5 = 0
3. 7 p− 8. 3 q+ 7. 4 r+ 28. 1 = 0
[p= 1 .5,q= 4 .5,r= 0 .5]
5.
x
2
−
y
3
+
2 z
5
=−
1
20
x
4
+
2 y
3
−
z
2
=
19
40
x+y−z=
59
(^60) [
x=
7
20
,y=
17
40
,z=−
5
24
]
- In a system of forces, the relationship
between two forcesF 1 andF 2 is given by:
5 F 1 + 3 F 2 + 6 = 0
3 F 1 + 5 F 2 + 18 = 0
Use determinants to solve forF 1 andF 2.
[F 1 = 1 .5,F 2 =− 4 .5]
- Applying mesh-current analysis to an a.c.
circuit results in the following equations:
(5−j4)I 1 −(−j4)I 2 = 100 ∠ 0 ◦
(4+j 3 −j4)I 2 −(−j4)I 1 = 0
Solve the equations forI 1 andI 2.
[
I 1 = 10. 77 ∠ 19. 23 ◦A,
I 2 = 10. 45 ∠− 56. 73 ◦A
]
- Kirchhoff’s laws are used to determine the
current equations in an electrical network
and show that
i 1 + 8 i 2 + 3 i 3 =− 31
3 i 1 − 2 i 2 +i 3 =− 5
2 i 1 − 3 i 2 + 2 i 3 = 6
Use determinants to find the values ofi 1 ,i 2
andi 3. [i 1 =−5,i 2 =−4,i 3 =2]
- The forces in three members of a framework
areF 1 ,F 2 andF 3. They are related by the
simultaneous equations shown below.
1. 4 F 1 + 2. 8 F 2 + 2. 8 F 3 = 5. 6
4. 2 F 1 − 1. 4 F 2 + 5. 6 F 3 = 35. 0
4. 2 F 1 + 2. 8 F 2 − 1. 4 F 3 =− 5. 6