292 DIFFERENTIAL CALCULUS
27.4 Differentiation of a product
Wheny=uv, anduandvare both functions ofx,
then
dy
dx
=u
dv
dx
+v
du
dx
This is known as theproduct rule.
Problem 10. Find the differential coefficient of
y= 3 x^2 sin 2x.
3 x^2 sin 2xis a product of two terms 3x^2 and sin 2x
Letu= 3 x^2 andv=sin 2x
Using the product rule:
dy
dx
= u
dv
dx
+ v
du
dx
↓↓ ↓ ↓
gives:
dy
dx
=(3x^2 )(2 cos 2x)+(sin 2x)(6x)
i.e.
dy
dx
= 6 x^2 cos 2x+ 6 xsin 2x
= 6 x(xcos 2x+sin 2x)
Note that the differential coefficient of a product
isnotobtained by merely differentiating each term
and multiplying the two answers together. The prod-
uct rule formulamustbe used when differentiating
products.
Problem 11. Find the rate of change ofywith
respect toxgiveny= 3
√
xln 2x.
The rate of change ofywith respect toxis given
by
dy
dx
y= 3
√
xln 2x= 3 x
1
(^2) ln 2x, which is a product.
Letu= 3 x
1
(^2) andv=ln 2x
Then
dy
dx
= u
dv
dx
v
du
dx
↓↓ ↓ ↓
(
3 x
1
2
)(
1
x
)
+(ln 2x)
[
3
(
1
2
)
x
1
2 −^1
]
= 3 x
1
2 −^1 +(ln2x)
(
3
2
)
x−
1
2
= 3 x−
1
2
(
1 +
1
2
ln 2x
)
i.e.
dy
dx
3
√
x
(
1 +
1
2
ln 2x
)
Problem 12. Differentiatey=x^3 cos 3xlnx.
Letu=x^3 cos 3x(i.e. a product) andv=lnx
Then
dy
dx
=u
dv
dx
+v
du
dx
where
du
dx
=(x^3 )(−3 sin 3x)+(cos 3x)(3x^2 )
and
dv
dx
1
x
Hence
dy
dx
=(x^3 cos 3x)
(
1
x
)
+(lnx)[− 3 x^3 sin 3x
- 3 x^2 cos 3x]
=x^2 cos 3x+ 3 x^2 lnx(cos 3x−xsin 3x)
i.e.
dy
dx
=x^2 {cos 3x+3lnx(cos 3x−xsin 3x)}
Problem 13. Determine the rate of change of
voltage, givenv= 5 tsin 2tvolts whent= 0 .2s.
Rate of change of voltage=
dv
dt
=(5t)(2 cos 2t)+( sin 2t)(5)
= 10 tcos 2t+5 sin 2t
Whent= 0 .2,
dv
dt
=10(0.2) cos 2(0.2)
+5 sin 2(0.2)
=2 cos 0. 4 +5 sin 0.4 (where cos 0. 4
means the cosine of 0.4 radians)
Hence
dv
dt
=2(0.92106)+5(0.38942)
= 1. 8421 + 1. 9471 = 3. 7892
i.e., the rate of change of voltage whent=0.2 s is
3.79 volts/s, correct to 3 significant figures.