Higher Engineering Mathematics

(Greg DeLong) #1
292 DIFFERENTIAL CALCULUS

27.4 Differentiation of a product


Wheny=uv, anduandvare both functions ofx,


then

dy
dx

=u

dv
dx

+v

du
dx

This is known as theproduct rule.


Problem 10. Find the differential coefficient of
y= 3 x^2 sin 2x.

3 x^2 sin 2xis a product of two terms 3x^2 and sin 2x
Letu= 3 x^2 andv=sin 2x
Using the product rule:
dy
dx

= u

dv
dx

+ v

du
dx
↓↓ ↓ ↓

gives:

dy
dx

=(3x^2 )(2 cos 2x)+(sin 2x)(6x)

i.e.

dy
dx

= 6 x^2 cos 2x+ 6 xsin 2x

= 6 x(xcos 2x+sin 2x)

Note that the differential coefficient of a product
isnotobtained by merely differentiating each term
and multiplying the two answers together. The prod-
uct rule formulamustbe used when differentiating
products.

Problem 11. Find the rate of change ofywith
respect toxgiveny= 3


xln 2x.

The rate of change ofywith respect toxis given


by

dy
dx

y= 3


xln 2x= 3 x

1

(^2) ln 2x, which is a product.
Letu= 3 x
1
(^2) andv=ln 2x
Then
dy
dx
= u
dv
dx




  • v
    du
    dx
    ↓↓ ↓ ↓


    (
    3 x
    1
    2
    )(
    1
    x
    )
    +(ln 2x)
    [
    3
    (
    1
    2
    )
    x
    1
    2 −^1
    ]
    = 3 x
    1
    2 −^1 +(ln2x)
    (
    3
    2
    )
    x−
    1
    2
    = 3 x−
    1
    2
    (
    1 +
    1
    2
    ln 2x
    )
    i.e.
    dy
    dx


    3

    x
    (
    1 +
    1
    2
    ln 2x
    )
    Problem 12. Differentiatey=x^3 cos 3xlnx.
    Letu=x^3 cos 3x(i.e. a product) andv=lnx
    Then
    dy
    dx
    =u
    dv
    dx
    +v
    du
    dx
    where
    du
    dx
    =(x^3 )(−3 sin 3x)+(cos 3x)(3x^2 )
    and
    dv
    dx


    1
    x
    Hence
    dy
    dx
    =(x^3 cos 3x)
    (
    1
    x
    )
    +(lnx)[− 3 x^3 sin 3x



  • 3 x^2 cos 3x]
    =x^2 cos 3x+ 3 x^2 lnx(cos 3x−xsin 3x)
    i.e.
    dy
    dx
    =x^2 {cos 3x+3lnx(cos 3x−xsin 3x)}
    Problem 13. Determine the rate of change of
    voltage, givenv= 5 tsin 2tvolts whent= 0 .2s.
    Rate of change of voltage=
    dv
    dt
    =(5t)(2 cos 2t)+( sin 2t)(5)
    = 10 tcos 2t+5 sin 2t
    Whent= 0 .2,
    dv
    dt
    =10(0.2) cos 2(0.2)
    +5 sin 2(0.2)
    =2 cos 0. 4 +5 sin 0.4 (where cos 0. 4
    means the cosine of 0.4 radians)
    Hence
    dv
    dt
    =2(0.92106)+5(0.38942)
    = 1. 8421 + 1. 9471 = 3. 7892
    i.e., the rate of change of voltage whent=0.2 s is
    3.79 volts/s, correct to 3 significant figures.

Free download pdf