Higher Engineering Mathematics

(Greg DeLong) #1
294 DIFFERENTIAL CALCULUS

Problem 16. Find the derivative ofy=secax.

y=secax=

1
cosax

(i.e. a quotient). Letu=1 and
v=cosax

dy
dx

=

v

du
dx

−u

dv
dx
v^2

=

(cosax)(0)−(1)(−asinax)
(cosax)^2

=

asinax
cos^2 ax

=a

(
1
cosax

)(
sinax
cosax

)

i.e.

dy
dx

=asecaxtanax

Problem 17. Differentiatey=

te^2 t
2 cost

The function


te^2 t
2 cost

is a quotient, whose numerator
is a product.
Letu=te^2 tandv=2 costthen
du
dt

=(t)(2e^2 t)+(e^2 t)(1) and

dv
dt

=−2 sint

Hence

dy
dx

=

v

du
dx

−u

dv
dx
v^2

=

(2 cost)[2te^2 t+e^2 t]−(te^2 t)(−2 sint)
(2 cost)^2

=

4 te^2 tcost+2e^2 tcost+ 2 te^2 tsint
4 cos^2 t

=

2e^2 t[2tcost+cost+tsint]
4 cos^2 t

i.e.

dy
dx

=

e^2 t
2 cos^2 t

(2tcost+cost+tsint)

Problem 18. Determine the gradient of the

curvey=

5 x
2 x^2 + 4

at the point

(

3,


3
2

)

.

Lety= 5 xandv= 2 x^2 + 4

dy
dx

=

v

du
dx

−u

dv
dx
v^2

=

(2x^2 +4)(5)−(5x)(4x)
(2x^2 +4)^2

=

10 x^2 + 20 − 20 x^2
(2x^2 +4)^2

=

20 − 10 x^2
(2x^2 +4)^2

At the point

(

3,


3
2

)

,x=


3,

hence the gradient=

dy
dx

=

20 −10(


3)^2
[2(


3)^2 +4]^2

=

20 − 30
100

=−

1
10

Now try the following exercise.

Exercise 119 Further problems on differen-
tiating quotients

In Problems 1 to 5, differentiate the quotients
with respect to the variable.

1.

2 cos 3x
x^3

[
− 6
x^4

(xsin 3x+cos 3x)

]

2.

2 x
x^2 + 1

[
2(1−x^2 )
(x^2 +1)^2

]

3.

3


θ^3
2 sin 2θ

[
3


θ(3 sin 2θ− 4 θcos 2θ)
4 sin^22 θ

]

4.

ln 2t

t




1 −

1
2

ln 2t

t^3




5.

2 xe^4 x
sinx

[
2e^4 x
sin^2 x

{(1+ 4 x) sinx−xcosx}

]


  1. Find the gradient of the curvey=


2 x
x^2 − 5

at
the point (2,−4). [−18]


  1. Evaluate


dy
dx

atx= 2 .5, correct to 3 significant

figures, giveny=

2 x^2 + 3
ln 2x

.
[3.82]
Free download pdf