294 DIFFERENTIAL CALCULUSProblem 16. Find the derivative ofy=secax.y=secax=1
cosax(i.e. a quotient). Letu=1 and
v=cosaxdy
dx=vdu
dx−udv
dx
v^2=(cosax)(0)−(1)(−asinax)
(cosax)^2=asinax
cos^2 ax=a(
1
cosax)(
sinax
cosax)i.e.dy
dx=asecaxtanaxProblem 17. Differentiatey=te^2 t
2 costThe function
te^2 t
2 costis a quotient, whose numerator
is a product.
Letu=te^2 tandv=2 costthen
du
dt=(t)(2e^2 t)+(e^2 t)(1) anddv
dt=−2 sintHencedy
dx=vdu
dx−udv
dx
v^2=(2 cost)[2te^2 t+e^2 t]−(te^2 t)(−2 sint)
(2 cost)^2=4 te^2 tcost+2e^2 tcost+ 2 te^2 tsint
4 cos^2 t=2e^2 t[2tcost+cost+tsint]
4 cos^2 ti.e.dy
dx=e^2 t
2 cos^2 t(2tcost+cost+tsint)Problem 18. Determine the gradient of thecurvey=5 x
2 x^2 + 4at the point(
√
3,√
3
2).Lety= 5 xandv= 2 x^2 + 4dy
dx=vdu
dx−udv
dx
v^2=(2x^2 +4)(5)−(5x)(4x)
(2x^2 +4)^2=10 x^2 + 20 − 20 x^2
(2x^2 +4)^2=20 − 10 x^2
(2x^2 +4)^2At the point(
√
3,√
3
2),x=√
3,hence the gradient=dy
dx=20 −10(√
3)^2
[2(√
3)^2 +4]^2=20 − 30
100=−1
10Now try the following exercise.Exercise 119 Further problems on differen-
tiating quotientsIn Problems 1 to 5, differentiate the quotients
with respect to the variable.1.2 cos 3x
x^3[
− 6
x^4(xsin 3x+cos 3x)]2.2 x
x^2 + 1[
2(1−x^2 )
(x^2 +1)^2]3.3√
θ^3
2 sin 2θ[
3√
θ(3 sin 2θ− 4 θcos 2θ)
4 sin^22 θ]4.ln 2t
√
t⎡⎢
⎣1 −1
2ln 2t
√
t^3⎤⎥
⎦5.2 xe^4 x
sinx[
2e^4 x
sin^2 x{(1+ 4 x) sinx−xcosx}]- Find the gradient of the curvey=
2 x
x^2 − 5at
the point (2,−4). [−18]- Evaluate
dy
dxatx= 2 .5, correct to 3 significantfigures, giveny=2 x^2 + 3
ln 2x.
[3.82]