294 DIFFERENTIAL CALCULUS
Problem 16. Find the derivative ofy=secax.
y=secax=
1
cosax
(i.e. a quotient). Letu=1 and
v=cosax
dy
dx
=
v
du
dx
−u
dv
dx
v^2
=
(cosax)(0)−(1)(−asinax)
(cosax)^2
=
asinax
cos^2 ax
=a
(
1
cosax
)(
sinax
cosax
)
i.e.
dy
dx
=asecaxtanax
Problem 17. Differentiatey=
te^2 t
2 cost
The function
te^2 t
2 cost
is a quotient, whose numerator
is a product.
Letu=te^2 tandv=2 costthen
du
dt
=(t)(2e^2 t)+(e^2 t)(1) and
dv
dt
=−2 sint
Hence
dy
dx
=
v
du
dx
−u
dv
dx
v^2
=
(2 cost)[2te^2 t+e^2 t]−(te^2 t)(−2 sint)
(2 cost)^2
=
4 te^2 tcost+2e^2 tcost+ 2 te^2 tsint
4 cos^2 t
=
2e^2 t[2tcost+cost+tsint]
4 cos^2 t
i.e.
dy
dx
=
e^2 t
2 cos^2 t
(2tcost+cost+tsint)
Problem 18. Determine the gradient of the
curvey=
5 x
2 x^2 + 4
at the point
(
√
3,
√
3
2
)
.
Lety= 5 xandv= 2 x^2 + 4
dy
dx
=
v
du
dx
−u
dv
dx
v^2
=
(2x^2 +4)(5)−(5x)(4x)
(2x^2 +4)^2
=
10 x^2 + 20 − 20 x^2
(2x^2 +4)^2
=
20 − 10 x^2
(2x^2 +4)^2
At the point
(
√
3,
√
3
2
)
,x=
√
3,
hence the gradient=
dy
dx
=
20 −10(
√
3)^2
[2(
√
3)^2 +4]^2
=
20 − 30
100
=−
1
10
Now try the following exercise.
Exercise 119 Further problems on differen-
tiating quotients
In Problems 1 to 5, differentiate the quotients
with respect to the variable.
1.
2 cos 3x
x^3
[
− 6
x^4
(xsin 3x+cos 3x)
]
2.
2 x
x^2 + 1
[
2(1−x^2 )
(x^2 +1)^2
]
3.
3
√
θ^3
2 sin 2θ
[
3
√
θ(3 sin 2θ− 4 θcos 2θ)
4 sin^22 θ
]
4.
ln 2t
√
t
⎡
⎢
⎣
1 −
1
2
ln 2t
√
t^3
⎤
⎥
⎦
5.
2 xe^4 x
sinx
[
2e^4 x
sin^2 x
{(1+ 4 x) sinx−xcosx}
]
- Find the gradient of the curvey=
2 x
x^2 − 5
at
the point (2,−4). [−18]
- Evaluate
dy
dx
atx= 2 .5, correct to 3 significant
figures, giveny=
2 x^2 + 3
ln 2x
.
[3.82]