METHODS OF DIFFERENTIATION 295G
27.6 Function of a function
It is often easier to make a substitution before
differentiating.
If y is a function ofxthendy
dx=dy
du×du
dxThis is known as the‘function of a function’rule
(or sometimes thechain rule).
For example, ify=(3x−1)^9 then, by making
the substitutionu=(3x−1),y=u^9 , which is of the
‘standard’ form.
Hence
dy
du= 9 u^8 anddu
dx= 3Then
dy
dx=dy
du×du
dx=(9u^8 )(3)= 27 u^8Rewritinguas (3x−1) gives:
dy
dx=27(3x−1)^8Sinceyis a function ofu, anduis a function ofx,
thenyis a function of a function ofx.
Problem 19. Differentiatey=3 cos(5x^2 +2).Letu= 5 x^2 +2 theny=3 cosu
Hence
du
dx= 10 xanddy
du=−3 sinu.Using the function of a function rule,
dy
dx=dy
du×du
dx=(−3 sinu)(10x)=− 30 xsinuRewritinguas 5x^2 +2 gives:
dy
dx=− 30 xsin( 5 x^2 + 2 )Problem 20. Find the derivative of
y=(4t^3 − 3 t)^6.Letu= 4 t^3 − 3 t, theny=u^6
Hence
du
dt= 12 t^2 −3 anddy
du= 6 u^5Using the function of a function rule,dy
dx=dy
du×du
dx=(6u^5 )(12t^2 −3)Rewritinguas (4t^3 − 3 t) gives:dy
dt=6(4t^3 − 3 t)^5 (12t^2 −3)=18(4t^2 −1)(4t^3 − 3 t)^5Problem 21. Determine the differential coeffi-
cient ofy=√
(3x^2 + 4 x−1).y=√
(3x^2 + 4 x−1)=(3x^2 + 4 x−1)1
2Letu= 3 x^2 + 4 x−1 theny=u1
2Hencedu
dx= 6 x+4 anddy
du=1
2u−1(^2) =
1
2
√
u
Using the function of a function rule,
dy
dx
dy
du
×
du
dx
(
1
2
√
u
)
(6x+4)=
3 x+ 2
√
u
i.e.
dy
dx
3 x+ 2
√
( 3 x^2 + 4 x− 1 )
Problem 22. Differentiatey=3 tan^43 x.
Letu=tan 3xtheny= 3 u^4
Hence
du
dx
=3 sec^23 x, (from Problem 15), and
dy
du
= 12 u^3
Then
dy
dx
dy
du
×
du
dx
=(12u^3 )(3 sec^23 x)
=12( tan 3x)^3 (3 sec^23 x)
i.e.
dy
dx
=36 tan^33 xsec^23 x
Problem 23. Find the differential coefficient of
y=
2
(2t^3 −5)^4