METHODS OF DIFFERENTIATION 295
G
27.6 Function of a function
It is often easier to make a substitution before
differentiating.
If y is a function ofxthen
dy
dx
=
dy
du
×
du
dx
This is known as the‘function of a function’rule
(or sometimes thechain rule).
For example, ify=(3x−1)^9 then, by making
the substitutionu=(3x−1),y=u^9 , which is of the
‘standard’ form.
Hence
dy
du
= 9 u^8 and
du
dx
= 3
Then
dy
dx
=
dy
du
×
du
dx
=(9u^8 )(3)= 27 u^8
Rewritinguas (3x−1) gives:
dy
dx
=27(3x−1)^8
Sinceyis a function ofu, anduis a function ofx,
thenyis a function of a function ofx.
Problem 19. Differentiatey=3 cos(5x^2 +2).
Letu= 5 x^2 +2 theny=3 cosu
Hence
du
dx
= 10 xand
dy
du
=−3 sinu.
Using the function of a function rule,
dy
dx
=
dy
du
×
du
dx
=(−3 sinu)(10x)=− 30 xsinu
Rewritinguas 5x^2 +2 gives:
dy
dx
=− 30 xsin( 5 x^2 + 2 )
Problem 20. Find the derivative of
y=(4t^3 − 3 t)^6.
Letu= 4 t^3 − 3 t, theny=u^6
Hence
du
dt
= 12 t^2 −3 and
dy
du
= 6 u^5
Using the function of a function rule,
dy
dx
=
dy
du
×
du
dx
=(6u^5 )(12t^2 −3)
Rewritinguas (4t^3 − 3 t) gives:
dy
dt
=6(4t^3 − 3 t)^5 (12t^2 −3)
=18(4t^2 −1)(4t^3 − 3 t)^5
Problem 21. Determine the differential coeffi-
cient ofy=
√
(3x^2 + 4 x−1).
y=
√
(3x^2 + 4 x−1)=(3x^2 + 4 x−1)
1
2
Letu= 3 x^2 + 4 x−1 theny=u
1
2
Hence
du
dx
= 6 x+4 and
dy
du
=
1
2
u−
1
(^2) =
1
2
√
u
Using the function of a function rule,
dy
dx
dy
du
×
du
dx
(
1
2
√
u
)
(6x+4)=
3 x+ 2
√
u
i.e.
dy
dx
3 x+ 2
√
( 3 x^2 + 4 x− 1 )
Problem 22. Differentiatey=3 tan^43 x.
Letu=tan 3xtheny= 3 u^4
Hence
du
dx
=3 sec^23 x, (from Problem 15), and
dy
du
= 12 u^3
Then
dy
dx
dy
du
×
du
dx
=(12u^3 )(3 sec^23 x)
=12( tan 3x)^3 (3 sec^23 x)
i.e.
dy
dx
=36 tan^33 xsec^23 x
Problem 23. Find the differential coefficient of
y=
2
(2t^3 −5)^4