296 DIFFERENTIAL CALCULUSy=2
(2t^3 −5)^4=2(2t^3 −5)−^4. Let u=(2t^3 −5),theny= 2 u−^4Hencedu
dt= 6 t^2 anddy
du=− 8 u−^5 =− 8
u^5Thendy
dt=dy
du×du
dt=(
− 8
u^5)
(6t^2 )=− 48 t^2
(2t^3 −5)^5Now try the following exercise.Exercise 120 Further problems on the func-
tion of a functionIn Problems 1 to 8, find the differential coeffi-
cients with respect to the variable.- (2x^3 − 5 x)^5 [5(6x^2 −5)(2x^3 − 5 x)^4 ]
- 2 sin (3θ−2) [6 cos (3θ−2)]
- 2 cos^5 α [−10 cos^4 αsinα]
4.1
(x^3 − 2 x+1)^5[
5(2− 3 x^2 )
(x^3 − 2 x+1)^6]- 5e^2 t+^1 [10e^2 t+^1 ]
- 2 cot (5t^2 +3) [− 20 tcosec^2 (5t^2 +3)]
- 6 tan (3y+1) [18 sec^2 (3y+1)]
- 2etanθ [2 sec^2 θetanθ]
- Differentiateθsin
(
θ−π
3)
with respect toθ,
and evaluate, correct to 3 significant figures,
whenθ=π
2[1.86]27.7 Successive differentiation
When a function y=f(x) is differentiated with
respect toxthe differential coefficient is written as
dy
dx
orf′(x). If the expression is differentiated again,
the second differential coefficient is obtained andis written asd^2 y
dx^2(pronounced dee twoyby deex
squared) orf′′(x) (pronouncedfdouble-dashx).By successive differentiation further higher deriv-atives such asd^3 y
dx^3andd^4 y
dx^4may be obtained.Thus ify= 3 x^4 ,dy
dx= 12 x^3 ,d^2 y
dx^2= 36 x^2 ,d^3 y
dx^3= 72 x,d^4 y
dx^4=72 andd^5 y
dx^5=0.Problem 24. Iff(x)= 2 x^5 − 4 x^3 + 3 x−5, find
f′′(x).f(x)= 2 x^5 − 4 x^3 + 3 x− 5f′(x)= 10 x^4 − 12 x^2 + 3f′′(x)= 40 x^3 − 24 x= 4 x(10x^2 −6)Problem 25. Ify=cosx−sinx, evaluatex,inthe range 0≤x≤π
2, whend^2 y
dx^2is zero.Since y=cosx−sinx,dy
dx=−sinx−cosx andd^2 y
dx^2=−cosx+sinx.Whend^2 y
dx^2is zero,−cosx+sinx=0,i.e. sinx=cosxorsinx
cosx=1.Hence tanx=1 andx=arctan1= 45 ◦ orπ
4radsin the range 0≤x≤π
2Problem 26. Giveny= 2 xe−^3 xshow thatd^2 y
dx^2+ 6dy
dx+ 9 y= 0.y= 2 xe−^3 x(i.e. a product)Hencedy
dx=(2x)(−3e−^3 x)+(e−^3 x)(2)=− 6 xe−^3 x+2e−^3 x