METHODS OF DIFFERENTIATION 297
G
d^2 y
dx^2
=[(− 6 x)(−3e−^3 x)+(e−^3 x)(−6)]
+(−6e−^3 x)
= 18 xe−^3 x−6e−^3 x−6e−^3 x
i.e.
d^2 y
dx^2
= 18 xe−^3 x−12e−^3 x
Substituting values into
d^2 y
dx^2
+ 6
dy
dx
+ 9 ygives:
(18xe−^3 x−12e−^3 x)+6(− 6 xe−^3 x+2e−^3 x)
+9(2xe−^3 x)= 18 xe−^3 x−12e−^3 x− 36 xe−^3 x
+12e−^3 x+ 18 xe−^3 x= 0
Thus wheny= 2 xe−^3 x,
d^2 y
dx^2
+ 6
dy
dx
+ 9 y= 0
Problem 27. Evaluate
d^2 y
dθ^2
whenθ=0given
y=4 sec 2θ.
Sincey=4 sec 2θ,
then
dy
dθ
=(4)(2) sec 2θtan 2θ(from Problem 16)
=8 sec 2θtan 2θ(i.e. a product)
d^2 y
dθ^2
=(8 sec 2θ)(2 sec^22 θ)
+(tan 2θ)[(8)(2) sec 2θtan 2θ]
=16 sec^32 θ+16 sec 2θtan^22 θ
When θ=0,
d^2 y
dθ^2
=16 sec^30 +16 sec 0 tan^20
=16(1)+16(1)(0)= 16.
Now try the following exercise.
Exercise 121 Further problems on succes-
sive differentiation
- Ify= 3 x^4 + 2 x^3 − 3 x+2 find
(a)
d^2 y
dx^2
(b)
d^3 y
dx^3
[(a) 36x^2 + 12 x (b) 72x+12]
- (a) Givenf(t)=
2
5
t^2 −
1
t^3
+
3
t
−
√
t+ 1
determinef′′(t)
(b) Evaluatef′′(t) whent= 1
⎡
⎣
(a)
4
5
−
12
t^5
+
6
t^3
+
1
4
√
t^3
(b) − 4. 95
⎤
⎦
In Problems 3 and 4, find the second differ-
ential coefficient with respect to the variable.
- (a) 3 sin 2[t+cost (b) 2 ln 4θ
(a)−(12 sin 2t+cost) (b)
− 2
θ^2
]
- (a) 2 cos^2 x (b) (2x−3)^4
[(a) 4( sin^2 x−cos^2 x) (b) 48(2x−3)^2 ] - Evaluatef′′(θ) whenθ=0given
f(θ)=2 sec 3θ [18] - Show that the differential equation
d^2 y
dx^2
− 4
dy
dx
+ 4 y=0 is satisfied
wheny=xe^2 x
- Show that, if P and Q are constants and
y=P cos(lnt)+Q sin(lnt), then
t^2
d^2 y
dt^2
+t
dy
dt
+y= 0