METHODS OF DIFFERENTIATION 297G
d^2 y
dx^2=[(− 6 x)(−3e−^3 x)+(e−^3 x)(−6)]+(−6e−^3 x)= 18 xe−^3 x−6e−^3 x−6e−^3 xi.e.d^2 y
dx^2= 18 xe−^3 x−12e−^3 xSubstituting values into
d^2 y
dx^2+ 6dy
dx+ 9 ygives:(18xe−^3 x−12e−^3 x)+6(− 6 xe−^3 x+2e−^3 x)+9(2xe−^3 x)= 18 xe−^3 x−12e−^3 x− 36 xe−^3 x+12e−^3 x+ 18 xe−^3 x= 0Thus wheny= 2 xe−^3 x,
d^2 y
dx^2+ 6dy
dx+ 9 y= 0Problem 27. Evaluated^2 y
dθ^2whenθ=0given
y=4 sec 2θ.Sincey=4 sec 2θ,
then
dy
dθ=(4)(2) sec 2θtan 2θ(from Problem 16)
=8 sec 2θtan 2θ(i.e. a product)d^2 y
dθ^2=(8 sec 2θ)(2 sec^22 θ)
+(tan 2θ)[(8)(2) sec 2θtan 2θ]
=16 sec^32 θ+16 sec 2θtan^22 θWhen θ=0,
d^2 y
dθ^2=16 sec^30 +16 sec 0 tan^20=16(1)+16(1)(0)= 16.Now try the following exercise.Exercise 121 Further problems on succes-
sive differentiation- Ify= 3 x^4 + 2 x^3 − 3 x+2 find
(a)d^2 y
dx^2(b)d^3 y
dx^3
[(a) 36x^2 + 12 x (b) 72x+12]- (a) Givenf(t)=
2
5t^2 −1
t^3+3
t−√
t+ 1
determinef′′(t)(b) Evaluatef′′(t) whent= 1
⎡⎣(a)4
5−12
t^5+6
t^3+14√
t^3
(b) − 4. 95⎤⎦In Problems 3 and 4, find the second differ-
ential coefficient with respect to the variable.- (a) 3 sin 2[t+cost (b) 2 ln 4θ
(a)−(12 sin 2t+cost) (b)− 2
θ^2]- (a) 2 cos^2 x (b) (2x−3)^4
[(a) 4( sin^2 x−cos^2 x) (b) 48(2x−3)^2 ] - Evaluatef′′(θ) whenθ=0given
f(θ)=2 sec 3θ [18] - Show that the differential equation
d^2 y
dx^2
− 4dy
dx+ 4 y=0 is satisfiedwheny=xe^2 x- Show that, if P and Q are constants and
y=P cos(lnt)+Q sin(lnt), then
t^2d^2 y
dt^2+tdy
dt+y= 0