320 DIFFERENTIAL CALCULUSNow try the following exercise.Exercise 130 Further problems on differen-
tiating implicit functionsIn Problems 1 and 2 differentiate the given func-
tions with respect tox.- (a) 3y^5 (b) 2 cos 4θ (c)
√ k ⎡ ⎢ ⎢ ⎣(a) 15y^4dy
dx(b)−8 sin 4θdθ
dx(c)1
2√
kdk
dx⎤⎥
⎥
⎦- (a)
5
2ln 3t (b)3
4e^2 y+^1 (c) 2 tan 3y
⎡⎢
⎣(a)5
2 tdt
dx(b)3
2e^2 y+^1dy
dx(c) 6 sec^23 ydy
dx⎤⎥
⎦- Differentiate the following with respect toy:
(a) 3 sin 2θ (b) 4√
x^3 (c)2⎡ et⎢
⎢
⎣(a) 6 cos 2θdθ
dy(b) 6√
xdx
dy(c)− 2
etdt
dy⎤⎥
⎥
⎦- Differentiate the following with respect tou:
(a)2
(3x+1)(b) 3 sec 2θ (c)2 √ y ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣(a)− 6
(3x+1)^2dx
du(b) 6 sec 2θtan 2θdθ
du(c)− 1
√
y^3dy
du⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦30.3 Differentiating implicit
functions containing products
and quotientsThe product and quotient rules of differentiation
must be applied when differentiating functions con-
taining products and quotients of two variables.
For example,d
dx(x^2 y)=(x^2 )d
dx(y)+(y)d
dx(x^2 ),by the product rule=(x^2 )(
1dy
dx)
+y(2x),by using equation (1)=x^2dy
dx+ 2 xyProblem 3. Determined
dx(2x^3 y^2 ).In the product rule of differentiation letu= 2 x^3 and
v=y^2.Thusd
dx(2x^3 y^2 )=(2x^3 )d
dx(y^2 )+(y^2 )d
dx(2x^3 )=(2x^3 )(
2 ydy
dx)
+(y^2 )(6x^2 )= 4 x^3 ydy
dx+ 6 x^2 y^2= 2 x^2 y(
2 xdy
dx+ 3 y)Problem 4. Findd
dx(
3 y
2 x)
.In the quotient rule of differentiation letu= 3 yand
v= 2 x.Thusd
dx(
3 y
2 x)
=(2x)d
dx(3y)−(3y)d
dx(2x)(2x)^2=(2x)(
3dy
dx)
−(3y)(2)4 x^2=6 xdy
dx− 6 y4 x^2=3
2 x^2(
xdy
dx−y)Problem 5. Differentiate z=x^2 + 3 xcos 3y
with respect toy.