DIFFERENTIATION OF IMPLICIT FUNCTIONS 321G
dz
dy=d
dy(x^2 )+d
dy(3xcos 3y)= 2 xdx
dy+[
(3x)(−3 sin 3y)+( cos 3y)(
3dx
dy)]= 2 xdx
dy− 9 xsin 3y+3 cos 3ydx
dyNow try the following exercise.
Exercise 131 Further problems on differen-
tiating implicit functions involving products
and quotients- Determine
d
dx(3x^2 y^3 )
[
3 xy^2(
3 xdy
dx+ 2 y)]- Find
d
dx(
2 y
5 x)[
2
5 x^2(
xdy
dx−y)]- Determine
d
du(
3 u
4 v)[
3
4 v^2(
v−udv
du)]- Givenz= 3
√
ycos 3xfinddz[ dx
3(
cos 3x
2√
y)
dy
dx− 9√
ysin 3x]- Determine
dz
dygivenz= 2 x^3 lny
[
2 x^2(
x
y+3lnydx
dy)]30.4 Further implicit differentiation
An implicit function such as 3x^2 +y^2 − 5 x+y=2,
may be differentiated term by term with respect to
x. This gives:
d
dx(3x^2 )+d
dx(y^2 )−d
dx(5x)+d
dx(y)=d
dx(2)i.e. 6 x+ 2 y
dy
dx− 5 + 1dy
dx=0,using equation (1) and standard derivatives.
An expression for the derivativedy
dxin terms of
xandymay be obtained by rearranging this latter
equation. Thus:(2y+1)dy
dx= 5 − 6 xfrom which,dy
dx=5 − 6 x
2 y+ 1Problem 6. Given 2y^2 − 5 x^4 − 2 − 7 y^3 =0,determinedy
dx.Each term in turn is differentiated with respect tox:Henced
dx(2y^2 )−d
dx(5x^4 )−d
dx(2)−d
dx(7y^3 )=d
dx(0)i.e. 4 ydy
dx− 20 x^3 − 0 − 21 y^2dy
dx= 0Rearranging gives:(4y− 21 y^2 )dy
dx= 20 x^3i.e.dy
dx=20 x^3
(4y− 21 y^2 )Problem 7. Determine the values ofdy
dxwhenx=4 given thatx^2 +y^2 =25.Differentiating each term in turn with respect tox
gives:d
dx(x^2 )+d
dx(y^2 )=d
dx(25)i.e. 2 x+ 2 ydy
dx= 0Hencedy
dx=−2 x
2 y=−x
ySincex^2 +y^2 =25, whenx=4,y=√
(25− 42 )=± 3Thus whenx=4 andy=±3,dy
dx=−4
± 3=±4
3