340 DIFFERENTIAL CALCULUS
Problem 14. Show thatd
dx[
tanh−^1x
a]
=
a
a^2 −x^2and hence determine the differentialcoefficient of tanh−^14 x
3Ify=tanh−^1
x
athenx
a=tanhyandx=atanhydx
dy=asech^2 y=a(1−tanh^2 y), since1 −sech^2 y=tanh^2 y=a[
1 −(xa) 2 ]
=a(
a^2 −x^2
a^2)
=a^2 −x^2
aHence
dy
dx=1
dx
dy=a
a^2 −x^2Comparing tanh−^1
4 x
3with tanh−^1x
ashows thata=
3
4Hence
d
dx[
tanh−^14 x
3]
=3
4
(
3
4) 2
−x^2=3
4
9
16−x^2=3
4
9 − 16 x^2
16=3
4·16
(9− 16 x^2 )=12
9 − 16 x^2Problem 15. Differentiate cosech−^1 (sinhθ).From Table 33.2(v),
d
dx[cosech−^1 f(x)]=−f′(x)f(x)√
[f(x)]^2 + 1Hence
d
dθ[cosech−^1 (sinhθ)]=−coshθsinhθ√
[sinh^2 θ+1]=−coshθsinhθ√
cosh^2 θsince cosh^2 θ−sinh^2 θ= 1=−coshθ
sinhθcoshθ=− 1
sinhθ=−cosechθProblem 16. Find the differential coefficient of
y=sech−^1 (2x−1).From Table 33.2(iv),d
dx[sech−^1 f(x)]=−f′(x)f(x)√
1 −[f(x)]^2Hence,d
dx[sech−^1 (2x−1)]=− 2(2x−1)√
[1−(2x−1)^2 ]=− 2(2x−1)√
[1−(4x^2 − 4 x+1)]=− 2(2x−1)√
(4x− 4 x^2 )=− 2
(2x−1)√
[4x(1−x)]=− 2
(2x−1)2√
[x(1−x)]=− 1
( 2 x− 1 )√
[x(1−x)]Problem 17. Show that
d
dx[coth−^1 (sinx)]=secx.From Table 33.2(vi),d
dx[coth−^1 f(x)]=f′(x)
1 −[f(x)]^2Henced
dx[coth−^1 (sinx)]=cosx
[1−(sinx)^2 ]=cosx
cos^2 xsince cos^2 x+sin^2 x= 1=1
cosx=secxProblem 18. Differentiate
y=(x^2 −1) tanh−^1 x.Using the product rule,dy
dx=(x^2 −1)(
1
1 −x^2)
+( tanh−^1 x)(2x)=−(1−x^2 )
(1−x^2 )+ 2 xtanh−^1 x= 2 xtanh−^1 x− 1